{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
open import Categories.Functor.Bifunctor using (Bifunctor)
module Categories.Category.Construction.Wedges {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
(F : Bifunctor (Category.op C) C D) where
open import Level
open import Categories.Category.Core using (Category)
open import Categories.Diagram.Wedge F
Wedges : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) e′
Wedges = record
{ Obj = Wedge
; _⇒_ = Wedge-Morphism
; _≈_ = λ M N → u M ≈ u N
; id = Wedge-id
; _∘_ = Wedge-Morphism-∘
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = record { refl = Equiv.refl ; sym = Equiv.sym ; trans = Equiv.trans }
; ∘-resp-≈ = ∘-resp-≈
}
where
open Wedge-Morphism
open Category D