{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) open import Categories.Functor.Bifunctor using (Bifunctor) module Categories.Category.Construction.Wedges {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where open import Level open import Categories.Category.Core using (Category) open import Categories.Diagram.Wedge F Wedges : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) e′ Wedges = record { Obj = Wedge ; _⇒_ = Wedge-Morphism ; _≈_ = λ M N → u M ≈ u N ; id = Wedge-id ; _∘_ = Wedge-Morphism-∘ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = Equiv.sym ; trans = Equiv.trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Wedge-Morphism open Category D