{-# OPTIONS --without-K --safe --lossy-unification #-}
module Categories.Diagram.End.Properties where
open import Level
open import Data.Product using (Σ; _,_)
open import Function using (_$_)
open import Categories.Category using (Category)
open import Categories.Category.Construction.Arrow using (Morphism; mor)
open import Categories.Category.Construction.Functors using (Functors)
open import Categories.Diagram.End using () renaming (End to ∫)
open import Categories.Diagram.Equalizer using (Equalizer)
open import Categories.Diagram.Wedge using (Wedge; module Wedge-Morphism)
open import Categories.Functor using (Functor)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.NaturalTransformation using (NaturalTransformation; _∘ᵥ_) renaming (_∘ʳ_ to _▹ⁿ_; id to idN)
open import Categories.NaturalTransformation.Dinatural hiding (_≃_)
open import Categories.NaturalTransformation.Equivalence using () renaming (_≃_ to _≃ⁿ_)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) renaming (_≃_ to _≃ⁱ_)
open import Categories.Object.Product.Indexed
open import Categories.Object.Terminal as Terminal
import Categories.Category.Construction.Wedges as Wedges
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e o′ ℓ′ e′ : Level
P C D : Category o ℓ e
open Category using (o-level; ℓ-level; e-level)
module _ (F : Bifunctor (Category.op C) C D) where
open Wedges F
End⇒Terminal : ∫ F → Terminal Wedges
End⇒Terminal c = record
{ ⊤ = wedge
; ⊤-is-terminal = record
{ ! = λ {A} → record { u = factor A ; commute = universal }
; !-unique = λ {A} f → unique {A} (Wedge-Morphism.commute f)
}
}
where
open ∫ c
Terminal⇒End : Terminal Wedges → ∫ F
Terminal⇒End i = record
{ wedge = ⊤
; factor = λ W → u {W₁ = W} !
; universal = commute !
; unique = λ {_} {g} x → !-unique (record { u = g ; commute = x })
}
where
open Terminal.Terminal i
open Wedge-Morphism
module _ {F G : Bifunctor (Category.op C) C D} (F⇒G : NaturalTransformation F G) where
open ∫ renaming (E to end)
open Category D
opaque
end-η : {{ef : ∫ F}} {{eg : ∫ G}} → end ef ⇒ end eg
end-η {{ef}} {{eg}} = factor eg (record
{ E = ∫.E ef
; dinatural = dtHelper record
{ α = λ c → η (c , c) ∘ dinatural.α ef c
; commute = λ {C} {C′} f → begin
G.₁ (C.id , f) ∘ (η (C , C) ∘ αf C) ∘ D.id ≈⟨ pullˡ sym-assoc ⟩
((G.₁ (C.id , f) ∘ η (C , C)) ∘ αf C) ∘ D.id ≈⟨ nt.sym-commute (C.id , f) ⟩∘⟨refl ⟩∘⟨refl ⟩
((η (C , C′) ∘ F.₁ (C.id , f)) ∘ αf C) ∘ D.id ≈⟨ assoc²αε ⟩
η (C , C′) ∘ (F.₁ (C.id , f) ∘ αf C ∘ D.id) ≈⟨ refl⟩∘⟨ αf-comm f ⟩
η (C , C′) ∘ F.₁ (f , C.id) ∘ αf C′ ∘ D.id ≈⟨ assoc²εα ⟩
((η (C , C′) ∘ F.₁ (f , C.id)) ∘ αf C′) ∘ D.id ≈⟨ nt.commute (f , C.id) ⟩∘⟨refl ⟩∘⟨refl ⟩
((G.₁ (f , C.id) ∘ η (C′ , C′)) ∘ αf C′) ∘ D.id ≈⟨ pushˡ assoc ⟩
G.₁ (f , C.id) ∘ (η (C′ , C′) ∘ αf C′) ∘ D.id ∎
}
})
where
module nt = NaturalTransformation F⇒G
open nt using (η)
open HomReasoning
module C = Category C
module D = Category D
module F = Functor F
module G = Functor G
open DinaturalTransformation (dinatural ef) renaming (α to αf; commute to αf-comm)
open DinaturalTransformation (dinatural eg) renaming (α to αg; commute to αg-comm)
open Wedge
open MR D
module _ {F : Bifunctor (Category.op C) C D} (ω₁ ω₂ : ∫ F) where
private
module ω₁ = ∫ ω₁
module ω₂ = ∫ ω₂
open Category D
open M D
open _≅_
open Iso
open MR D
open HomReasoning
end-unique : ∫.E ω₁ ≅ ∫.E ω₂
end-unique .to = ω₁.factor ω₂.wedge
end-unique .from = ω₂.factor ω₁.wedge
end-unique .iso .isoʳ = ω₂.unique′ $ pullˡ ω₂.universal ○ ω₁.universal ○ ⟺ identityʳ
end-unique .iso .isoˡ = ω₁.unique′ $ pullˡ ω₁.universal ○ ω₂.universal ○ ⟺ identityʳ
module _ {C : Category o ℓ e } {D : Category o′ ℓ′ e′} where
open MR D
private
open module D = Category D
module C = Category C
variable
F G H : Bifunctor (Category.op C) C D
open HomReasoning
open NaturalTransformation using (η)
opaque
unfolding end-η
end-identity : {{ef : ∫ F}} → end-η (idN {F = F}) ≈ id
end-identity {F = F} {{ef}} = ∫.unique ef id-comm
end-η-commute : {{ef : ∫ F}} {{eg : ∫ G}} (α : NaturalTransformation F G) →
(c : C.Obj) → ∫.dinatural.α eg c ∘ end-η α ≈ α .η (c , c) ∘ ∫.dinatural.α ef c
end-η-commute ⦃ _ ⦄ ⦃ eg ⦄ α c = ∫.universal eg
end-η-resp-≈ : {{ef : ∫ F}} {{eg : ∫ G}} {α β : NaturalTransformation F G} →
α ≃ⁿ β → end-η α ≈ end-η β
end-η-resp-≈ {{ef}} {{eg}} e = ∫.unique eg $ ∫.universal eg ○ ⟺ e ⟩∘⟨refl
end-η-resp-∘ : (α : NaturalTransformation F G) (β : NaturalTransformation G H)
{{ef : ∫ F}} {{eg : ∫ G}} {{eh : ∫ H}} →
end-η (β ∘ᵥ α) ≈ end-η β ∘ end-η α
end-η-resp-∘ α β {{ef}} {{eg}} {{eh}} = eh.unique $ extendʳ eh.universal ○ refl⟩∘⟨ eg.universal ○ sym-assoc
where module eg = ∫ eg
module eh = ∫ eh
module _ {F G : Bifunctor (Category.op C) C D} (F≃G : F ≃ⁱ G) {{ef : ∫ F}} {{eg : ∫ G}} where
open Category D
open M D
open _≅_
open Iso
open HomReasoning
open module F≃G = NaturalIsomorphism F≃G
end-resp-≅ : ∫.E ef ≅ ∫.E eg
end-resp-≅ .to = end-η F⇐G
end-resp-≅ .from = end-η F⇒G
end-resp-≅ .iso .isoʳ = ⟺ (end-η-resp-∘ F⇐G F⇒G) ○ end-η-resp-≈ {α = F⇒G ∘ᵥ F⇐G} {β = idN} (λ {x} → F≃G.iso.isoʳ x) ○ end-identity {F = G}
end-resp-≅ .iso .isoˡ = ⟺ (end-η-resp-∘ F⇒G F⇐G) ○ end-η-resp-≈ {α = F⇐G ∘ᵥ F⇒G} {β = idN} (λ {x} → F≃G.iso.isoˡ x) ○ end-identity {F = F}
module _
{P : Bifunctor (Category.op C) C D}
(OP : IndexedProductOf D λ X → Bifunctor.₀ P (X , X))
(MP : IndexedProductOf D λ f → Bifunctor.₀ P (Morphism.dom {C = C} f , Morphism.cod f))
where
open Category D
private
module P = Bifunctor P
module OP = IndexedProductOf OP
module MP = IndexedProductOf MP
s t : OP.X ⇒ MP.X
s = MP.⟨ (λ f → P.₁ʳ (Morphism.arr f) ∘ OP.π (Morphism.dom f)) ⟩
t = MP.⟨ (λ f → P.₁ˡ (Morphism.arr f) ∘ OP.π (Morphism.cod f)) ⟩
open HomReasoning
open MR D
build-End : Equalizer D s t → ∫ P
build-End eq = record
{ wedge = record
{ E = obj
; dinatural = extranaturalʳ
(λ X → OP.π X ∘ arr)
λ {X Y f} → begin
P.₁ʳ f ∘ (OP.π X ∘ arr) ≈⟨ extendʳ MP.commute ⟨
MP.π (mor f) ∘ (s ∘ arr) ≈⟨ refl⟩∘⟨ equality ⟩
MP.π (mor f) ∘ (t ∘ arr) ≈⟨ extendʳ MP.commute ⟩
P.₁ˡ f ∘ (OP.π Y ∘ arr) ∎
}
; factor = λ W → equalize (factor-lemma W)
; universal = Equiv.sym (pushʳ universal) ○ OP.commute
; unique = λ eq′ → Equiv.sym (unique (OP.unique (sym-assoc ○ eq′)))
}
where
open Equalizer eq
abstract
factor-lemma : (W : Wedge P) → s ∘ OP.⟨ Wedge.dinatural.α W ⟩ ≈ t ∘ OP.⟨ Wedge.dinatural.α W ⟩
factor-lemma W = begin
s ∘ OP.⟨ dinatural.α ⟩
≈⟨ MP.⟨⟩∘ (λ f → P.₁ʳ (Morphism.arr f) ∘ OP.π (Morphism.dom f)) OP.⟨ dinatural.α ⟩ ⟩
MP.⟨ (λ f → (P.₁ʳ (Morphism.arr f) ∘ OP.π (Morphism.dom f)) ∘ OP.⟨ dinatural.α ⟩) ⟩
≈⟨ MP.⟨⟩-cong (pullʳ OP.commute) ⟩
MP.⟨ (λ f → P.₁ʳ (Morphism.arr f) ∘ dinatural.α (Morphism.dom f)) ⟩
≈⟨ MP.⟨⟩-cong (extranatural-commʳ dinatural) ⟩
MP.⟨ (λ f → P.₁ˡ (Morphism.arr f) ∘ dinatural.α (Morphism.cod f)) ⟩
≈⟨ MP.⟨⟩-cong (pullʳ OP.commute) ⟨
MP.⟨ (λ f → (P.₁ˡ (Morphism.arr f) ∘ OP.π (Morphism.cod f)) ∘ OP.⟨ dinatural.α ⟩) ⟩
≈⟨ MP.⟨⟩∘ (λ f → P.₁ˡ (Morphism.arr f) ∘ OP.π (Morphism.cod f)) OP.⟨ dinatural.α ⟩ ⟨
t ∘ OP.⟨ dinatural.α ⟩
∎
where open Wedge W