{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.NaturalTransformation.Equivalence {o ℓ e o′ ℓ′ e′}
{C : Category o ℓ e} {D : Category o′ ℓ′ e′} where
open import Level
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
open import Categories.Functor using (Functor)
open import Categories.NaturalTransformation.Core using (NaturalTransformation)
module _ {F G : Functor C D} where
infix 4 _≃_
open Category.Equiv D
_≃_ : Rel (NaturalTransformation F G) (o ⊔ e′)
_≃_ X Y = ∀ {x} → D [ NaturalTransformation.η X x ≈ NaturalTransformation.η Y x ]
≃-isEquivalence : IsEquivalence _≃_
≃-isEquivalence = record
{ refl = refl
; sym = λ f → sym f
; trans = λ f g → trans f g
}
≃-setoid : ∀ (F G : Functor C D) → Setoid (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′)
≃-setoid F G = record
{ Carrier = NaturalTransformation F G
; _≈_ = _≃_
; isEquivalence = ≃-isEquivalence
}