{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Duality {o ℓ e} (C : Category o ℓ e) where
open Category C
open import Level
open import Function using (_$_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Categories.Functor
open import Categories.Functor.Bifunctor
open import Categories.NaturalTransformation.Dinatural
open import Categories.Object.Initial
open import Categories.Object.Terminal
open import Categories.Object.Duality
open import Categories.Diagram.Equalizer op
open import Categories.Diagram.Coequalizer C
open import Categories.Diagram.Pullback op
open import Categories.Diagram.Pushout C
open import Categories.Diagram.Cone as Cone
open import Categories.Diagram.Cocone as Cocone
open import Categories.Diagram.End as End
open import Categories.Diagram.Coend as Coend
open import Categories.Diagram.Cowedge as Cowedge
open import Categories.Diagram.Limit as Limit
open import Categories.Diagram.Colimit as Colimit
open import Categories.Diagram.Wedge as Wedge
open import Categories.Category.Construction.Cocones using (Cocones)
private
variable
o′ ℓ′ e′ : Level
D J : Category o′ ℓ′ e′
A B : Obj
f g h : A ⇒ B
IsCoequalizer⇒IscoEqualizer : IsCoequalizer f g h → IsEqualizer h f g
IsCoequalizer⇒IscoEqualizer is-coe = record
{ equality = equality
; equalize = coequalize
; universal = universal
; unique = unique
}
where open IsCoequalizer is-coe
Coequalizer⇒coEqualizer : Coequalizer f g → Equalizer f g
Coequalizer⇒coEqualizer coe = record
{ arr = arr
; isEqualizer = IsCoequalizer⇒IscoEqualizer isCoequalizer
}
where open Coequalizer coe
IscoEqualizer⇒IsCoequalizer : IsEqualizer h f g → IsCoequalizer f g h
IscoEqualizer⇒IsCoequalizer is-eq = record
{ equality = equality
; coequalize = equalize
; universal = universal
; unique = unique
}
where open IsEqualizer is-eq
coEqualizer⇒Coequalizer : Equalizer f g → Coequalizer f g
coEqualizer⇒Coequalizer e = record
{ arr = arr
; isCoequalizer = IscoEqualizer⇒IsCoequalizer isEqualizer
}
where open Equalizer e
coPullback⇒Pushout : Pullback f g → Pushout f g
coPullback⇒Pushout p = record
{ i₁ = p₁
; i₂ = p₂
; commute = commute
; universal = universal
; universal∘i₁≈h₁ = p₁∘universal≈h₁
; universal∘i₂≈h₂ = p₂∘universal≈h₂
; unique-diagram = unique-diagram
}
where open Pullback p
Pushout⇒coPullback : Pushout f g → Pullback f g
Pushout⇒coPullback p = record
{ p₁ = i₁
; p₂ = i₂
; isPullback = record
{ commute = commute
; universal = universal
; p₁∘universal≈h₁ = universal∘i₁≈h₁
; p₂∘universal≈h₂ = universal∘i₂≈h₂
; unique-diagram = unique-diagram
}
}
where open Pushout p
module _ {F : Functor J C} where
open Functor F renaming (op to Fop)
coApex⇒Coapex : ∀ X → Apex Fop X → Coapex F X
coApex⇒Coapex X apex = record
{ ψ = ψ
; commute = commute
}
where open Cone.Apex apex
coCone⇒Cocone : Cone Fop → Cocone F
coCone⇒Cocone c = record
{ coapex = coApex⇒Coapex _ apex
}
where open Cone.Cone c
Coapex⇒coApex : ∀ X → Coapex F X → Apex Fop X
Coapex⇒coApex X coapex = record
{ ψ = ψ
; commute = commute
}
where open Cocone.Coapex coapex
Cocone⇒coCone : Cocone F → Cone Fop
Cocone⇒coCone c = record
{ apex = Coapex⇒coApex _ coapex
}
where open Cocone.Cocone c
coCone⇒⇒Cocone⇒ : ∀ {K K′} → Cone⇒ Fop K K′ → Cocone⇒ F (coCone⇒Cocone K′) (coCone⇒Cocone K)
coCone⇒⇒Cocone⇒ f = record
{ arr = arr
; commute = commute
}
where open Cone⇒ f
Cocone⇒⇒coCone⇒ : ∀ {K K′} → Cocone⇒ F K K′ → Cone⇒ Fop (Cocone⇒coCone K′) (Cocone⇒coCone K)
Cocone⇒⇒coCone⇒ f = record
{ arr = arr
; commute = commute
}
where open Cocone⇒ f
coLimit⇒Colimit : Limit Fop → Colimit F
coLimit⇒Colimit lim = record
{ initial = op⊤⇒⊥ (Cocones F) $ record
{ ⊤ = coCone⇒Cocone ⊤
; ⊤-is-terminal = record
{ ! = coCone⇒⇒Cocone⇒ !
; !-unique = λ f → !-unique (Cocone⇒⇒coCone⇒ f)
}
}
}
where open Limit.Limit lim
open Terminal terminal
Colimit⇒coLimit : Colimit F → Limit Fop
Colimit⇒coLimit colim = record
{ terminal = record
{ ⊤ = Cocone⇒coCone ⊥
; ⊤-is-terminal = record
{ ! = Cocone⇒⇒coCone⇒ !
; !-unique = λ f → !-unique (coCone⇒⇒Cocone⇒ f)
}
}
}
where open Colimit.Colimit colim
open Initial initial
module _ {F : Bifunctor (Category.op D) D C} where
open HomReasoning
open Functor F renaming (op to Fop)
coWedge⇒Cowedge : Wedge Fop → Cowedge F
coWedge⇒Cowedge W = record
{ E = E
; dinatural = DinaturalTransformation.op dinatural
}
where open Wedge.Wedge W
Cowedge⇒coWedge : Cowedge F → Wedge Fop
Cowedge⇒coWedge W = record
{ E = E
; dinatural = DinaturalTransformation.op dinatural
}
where open Cowedge.Cowedge W
coEnd⇒Coend : End Fop → Coend F
coEnd⇒Coend e = record
{ cowedge = coWedge⇒Cowedge wedge
; factor = λ W → factor (Cowedge⇒coWedge W)
; universal = universal
; unique = unique
}
where open End.End e
Coend⇒coEnd : Coend F → End Fop
Coend⇒coEnd e = record
{ wedge = Cowedge⇒coWedge cowedge
; factor = λ W → factor (coWedge⇒Cowedge W)
; universal = universal
; unique = unique
}
where open Coend.Coend e
module DiagramDualityConversionProperties where
private
Coequalizer⇔coEqualizer : ∀ (coequalizer : Coequalizer f g) →
coEqualizer⇒Coequalizer (Coequalizer⇒coEqualizer coequalizer) ≡ coequalizer
Coequalizer⇔coEqualizer _ = refl
coPullback⇔Pushout : ∀ (coPullback : Pullback f g) →
Pushout⇒coPullback (coPullback⇒Pushout coPullback) ≡ coPullback
coPullback⇔Pushout _ = refl
module _ {F : Functor J C} where
open Functor F renaming (op to Fop)
coApex⇔Coapex : ∀ X → (coApex : Apex Fop X) →
Coapex⇒coApex X (coApex⇒Coapex X coApex) ≡ coApex
coApex⇔Coapex _ _ = refl
coCone⇔Cocone : ∀ (coCone : Cone Fop) →
Cocone⇒coCone (coCone⇒Cocone coCone) ≡ coCone
coCone⇔Cocone _ = refl
coCone⇒⇔Cocone⇒ : ∀ {K K′} → (coCone⇒ : Cone⇒ Fop K K′) →
Cocone⇒⇒coCone⇒ (coCone⇒⇒Cocone⇒ coCone⇒) ≡ coCone⇒
coCone⇒⇔Cocone⇒ _ = refl
coLimit⇔Colimit : ∀ (coLimit : Limit Fop) →
Colimit⇒coLimit (coLimit⇒Colimit coLimit) ≡ coLimit
coLimit⇔Colimit _ = refl
module _ {F : Bifunctor (Category.op D) D C} where
open Functor F renaming (op to Fop)
coWedge⇔Cowedge : ∀ (coWedge : Wedge Fop) →
Cowedge⇒coWedge (coWedge⇒Cowedge coWedge) ≡ coWedge
coWedge⇔Cowedge _ = refl
coEnd⇔Coend : ∀ (coEnd : End Fop) →
Coend⇒coEnd (coEnd⇒Coend coEnd) ≡ coEnd
coEnd⇔Coend _ = refl