{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
open import Categories.Functor.Bifunctor using (Bifunctor)
module Categories.Diagram.Coend {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
(F : Bifunctor (Category.op C) C D) where
private
module C = Category C
module D = Category D
open D
open HomReasoning
open Equiv
variable
A B : Obj
f g : A ⇒ B
open import Level
open import Categories.Diagram.Cowedge F
open import Categories.Functor
open import Categories.Functor.Construction.Constant
open import Categories.NaturalTransformation.Dinatural
open import Categories.Morphism.Reasoning D
open Functor F
record Coend : Set (levelOfTerm F) where
field
cowedge : Cowedge
module cowedge = Cowedge cowedge
open cowedge public
open Cowedge
field
factor : (W : Cowedge) → cowedge.E ⇒ E W
universal : ∀ {W : Cowedge} {A} → factor W ∘ cowedge.dinatural.α A ≈ dinatural.α W A
unique : ∀ {W : Cowedge} {g : cowedge.E ⇒ E W} → (∀ {A} → g ∘ cowedge.dinatural.α A ≈ dinatural.α W A) → factor W ≈ g
η-id : factor cowedge ≈ D.id
η-id = unique identityˡ
unique′ :(∀ {A} → f ∘ cowedge.dinatural.α A ≈ g ∘ cowedge.dinatural.α A) → f ≈ g
unique′ {f = f} {g = g} eq = ⟺ (unique {W = Cowedge-∘ cowedge f} refl) ○ unique (⟺ eq)