{-# OPTIONS --safe --lossy-unification #-}

module Cubical.ZCohomology.EilenbergSteenrodZ where

open import Cubical.Homotopy.EilenbergSteenrod

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙)
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism

open import Cubical.Relation.Nullary

open import Cubical.Data.Empty as 
open import Cubical.Data.Unit
open import Cubical.Data.Bool
open import Cubical.Data.Nat
open import Cubical.Data.Int
open import Cubical.Data.Sigma

open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.AbGroup.Instances.Unit
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.Instances.Unit

open import Cubical.HITs.SetTruncation as ST
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.Truncation as T
open import Cubical.HITs.Susp
open import Cubical.HITs.Pushout
open import Cubical.HITs.Wedge
open import Cubical.HITs.Sn
open import Cubical.HITs.S1

open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Groups.Wedge
open import Cubical.ZCohomology.Groups.Sn

open coHomTheory
open Iso
open IsGroup
open GroupStr
open IsGroupHom

private
  suspΩFun' :  {} {A : Type } (n : ) (f : A  Path _ (0ₖ _) (0ₖ _))
            Susp A  coHomK (suc n)
  suspΩFun' n f north = 0ₖ _
  suspΩFun' n f south = 0ₖ _
  suspΩFun' n f (merid a i) = f a i

  suspΩFun :  {} {A : Type } (n : ) (f : A  coHomK n)  Susp A  coHomK (suc n)
  suspΩFun n f = suspΩFun' n λ a  Kn→ΩKn+1 n (f a)

  ≡suspΩFun :  {} (n : ) (A : Pointed ) (f : Susp (typ A)  coHomK (suc n)) (p : f north  0ₖ _)
             f  suspΩFun' n λ a  sym p ∙∙ (cong f (merid a)) ∙∙ (cong f (sym (merid (pt A)))  p)
  ≡suspΩFun n s f p i north = p i
  ≡suspΩFun n s f p i south = (cong f (sym (merid (pt s)))  p) i
  ≡suspΩFun n s f p i (merid a j) =
    doubleCompPath-filler (sym p) (cong f (merid a)) (cong f (sym (merid (pt s)))  p) i j

-- induction principle for Hⁿ(Susp A)
SuspCohomElim :  { ℓ'} {A : Pointed } (n : ) {B : coHom (suc n) (Susp (typ A))  Type ℓ'}
              ((x : coHom (suc n) (Susp (typ A)))  isProp (B x))
              ((f : typ A  Path _ (0ₖ _) (0ₖ _))  f (pt A)  refl  B  suspΩFun' n f ∣₂)
              (x : _)  B x
SuspCohomElim {A = A} n {B = B} isprop f =
  coHomPointedElim _ north isprop λ g gid
     subst (B  ∣_∣₂) (sym (≡suspΩFun n A g gid))
                       (f _ ((λ i  (sym gid ∙∙  j  g (merid (pt A) (~ i  j))) ∙∙ ((λ j  g (merid (pt A) (~ i  ~ j)))  gid)))
                                  ∙∙  i   j  gid (i  ~ j)) ∙∙ refl ∙∙ lUnit  j  gid (i  j)) (~ i))
                                  ∙∙ sym (rUnit refl)))

-- (Reduced) cohomology functor
coHomFunctor : { : Level}  (n : )  Pointed   AbGroup 
coHomFunctor (pos n) = coHomRedGroup n
coHomFunctor (negsuc n) _ = UnitAbGroup

-- Alternative definition with reduced groups replaced by unreduced one for n ≥ 1
coHomFunctor' : { : Level} (n : )  Pointed   AbGroup 
coHomFunctor' (pos zero) = coHomFunctor 0
coHomFunctor' (pos (suc n)) A = coHomGroup (suc n) (typ A)
coHomFunctor' (negsuc n) = coHomFunctor (negsuc n)

coHomFunctor≡coHomFunctor' :  {}  coHomFunctor {}  coHomFunctor'
coHomFunctor≡coHomFunctor' = funExt λ {(pos zero)  refl
                                     ; (pos (suc n))  funExt λ A  sym (coHomGroup≡coHomRedGroup n A)
                                     ; (negsuc n)  refl}

-- Ĥ⁰(Susp A) is contractible
H0-susp :  {} {A : Pointed }  isContr (coHomRed 0 (Susp (typ A) , north))
fst H0-susp = 0ₕ∙ _
snd (H0-susp {A = A}) =
  ST.elim  _  isOfHLevelPath 2 isSetSetTrunc _ _)
        λ {(f , p)
           cong ∣_∣₂ (Σ≡Prop  _  isSetℤ _ _)
                        (funExt λ {north  sym p
                                 ; south  sym p  cong f (merid (pt A))
                                 ; (merid a i) j  isSet→isSet' (isSetℤ)
                                                                  (sym p)
                                                                  (sym p  cong f (merid (pt A)))
                                                                  refl (cong f (merid a)) i j}))}
-- We need that Hⁿ⁺¹(Susp A) ≃ Hⁿ(A)

private
  suspFunCharacFun :  {} {A : Pointed } (n : )
                      ((Susp (typ A))  coHomK (suc n))
                      (typ A  (coHomK n))
  suspFunCharacFun {A = A} n f x = ΩKn+1→Kn n (sym (rCancelₖ (suc n) (f north))
                                                     ∙∙ cong  x  f x -[ (suc n) ]ₖ f north) ((merid x)  sym (merid (pt A)))
                                                     ∙∙ rCancelₖ (suc n) (f north))

  linvLem :  {} {A : Pointed } (n : ) (f : typ A  Path (coHomK (suc n)) (0ₖ _) (0ₖ _))
                        (fId : f (pt A)  refl)
                      (x : _)  suspΩFun n (suspFunCharacFun {A = A} n (suspΩFun' n f)) x
                                  suspΩFun' n f x
  linvLem n f fId north = refl
  linvLem n f fId south = refl
  linvLem {A = A} n f fId (merid x i) j = helper n x f fId j i
    where
    helper : (n : ) (a : typ A) (f : typ A  Path (coHomK (suc n)) (0ₖ _) (0ₖ _))
                       (fId : f (pt A)  refl)
                      Kn→ΩKn+1 n (suspFunCharacFun {A = A} n (suspΩFun' n f) a)  f a
    helper zero a f fId =
        Iso.rightInv (Iso-Kn-ΩKn+1 0) (sym (rCancelₖ 1 (0ₖ 1))
                                    ∙∙ cong  x  suspΩFun' 0 f x +ₖ 0ₖ 1) (merid a  (sym (merid (pt A))))
                                    ∙∙ (rCancelₖ 1 (0ₖ 1)))
     ∙∙ sym (rUnit _)
     ∙∙  j i  rUnitₖ 1 (congFunct (suspΩFun' 0 f) (merid a) (sym (merid (pt A))) j i) j)
     ∙∙ cong  p  f a  sym p) fId
     ∙∙ sym (rUnit (f a))
    helper (suc n) a f fId =
         Iso.rightInv (Iso-Kn-ΩKn+1 (suc n))
                           ((sym (rCancelₖ _ (0ₖ (suc (suc n))))
                        ∙∙ cong  x  suspΩFun' (suc n) f x +ₖ 0ₖ (suc (suc n))) (merid a  (sym (merid (pt A))))
                        ∙∙ rCancelₖ _ (0ₖ (suc (suc n)))))
      ∙∙ (((λ i  sym (rCancel≡refl n i)
                   ∙∙ cong  x  rUnitₖ (suc (suc n)) (suspΩFun' (suc n) f x) i) (merid a  (sym (merid (pt A))))
                   ∙∙ rCancel≡refl n i)))
      ∙∙ ((λ i  rUnit (congFunct (suspΩFun' (suc n) f) (merid a) (sym (merid (pt A))) i) (~ i)))
      ∙∙ cong  p  f a  sym p) fId
      ∙∙ sym (rUnit (f a))


suspFunCharac :  {} {A : Pointed } (n : )  Iso (coHom (suc (suc n)) (Susp (typ A))) (coHom (suc n) (typ A))
fun (suspFunCharac {A = A} n) =
  ST.map λ f  suspFunCharacFun {A = A} (suc n) f
inv (suspFunCharac {A = A} n) = ST.map (suspΩFun (suc n))
rightInv (suspFunCharac {A = A} n) =
  ST.elim  _  isOfHLevelPath 2 isSetSetTrunc _ _)
        λ f  T.rec (isProp→isOfHLevelSuc n (isSetSetTrunc _ _))
                 fId  cong ∣_∣₂
                (funExt  x  cong (ΩKn+1→Kn (suc n))
                                      ((λ i  sym (rCancel≡refl n i) ∙∙ cong  x  suspΩFun (suc n) f x +ₖ 0ₖ _)
                                                               (merid x  sym (merid (pt A))) ∙∙ rCancel≡refl n i)
                                    ∙∙ sym (rUnit (cong  x  suspΩFun (suc n) f x +ₖ 0ₖ _)
                                                                       ((merid x)  sym (merid (pt A)))))
                                    ∙∙ λ i  congFunct  x  rUnitₖ _ (suspΩFun (suc n) f x) i)
                                                                     (merid x) (sym (merid (pt A))) i)
                             ∙∙ ΩKn+1→Kn-hom (suc n) (Kn→ΩKn+1 (suc n) (f x))
                                                                  (sym (Kn→ΩKn+1 (suc n) (f (pt A))))
                             ∙∙ cong₂ _+ₖ_ (Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (f x))
                                           (cong  x  ΩKn+1→Kn (suc n) (sym (Kn→ΩKn+1 (suc n) x))) fId)
                             ∙∙ cong  y  f x +ₖ ΩKn+1→Kn (suc n) (sym y)) (Kn→ΩKn+10ₖ (suc n))
                             ∙∙ cong (f x +ₖ_) (ΩKn+1→Kn-refl (suc n))
                               rUnitₖ _ (f x))))
                     (fst (isConnectedPathKn n (f (pt A)) (0ₖ _)))
leftInv (suspFunCharac {A = A} n) =
  SuspCohomElim {A = A} _  _  isSetSetTrunc _ _)
    λ f fId  cong ∣_∣₂ (funExt (linvLem (suc n) f fId))

-- We also need that H¹(Susp A) ≃ Ĥ⁰(A)
suspFunCharac0 :  {} {A : Pointed }  Iso ( ((Susp (typ A))  coHomK 1) ∥₂)  A →∙ ( , 0) ∥₂
fun (suspFunCharac0 {A = A}) =
    ST.map λ f  suspFunCharacFun {A = A} 0 f
  ,  (cong (ΩKn+1→Kn 0) ((λ i  sym (rCancelₖ _ (f north))
                                   ∙∙ cong  x  f x -ₖ f north) (rCancel (merid (pt A)) i)
                                   ∙∙ rCancelₖ _ (f north))
                      ∙∙ (doubleCompPath-elim (sym (rCancelₖ _ (f north))) refl (rCancelₖ _ (f north)))
                      ∙∙ (cong (_∙ (rCancelₖ _ (f north))) (sym (rUnit (sym (rCancelₖ _ (f north))))))
                        (lCancel (rCancelₖ _ (f north)))))
inv suspFunCharac0 = ST.map λ f  suspΩFun 0 (fst f)
rightInv (suspFunCharac0 {A = A}) =
  ST.elim  _  isOfHLevelPath 2 isSetSetTrunc _ _)
    λ {(f , p)
       cong ∣_∣₂ (Σ≡Prop  _  isSetℤ _ _)
                   (funExt  x   j  transp  i  helix (wedgeMapS¹ (intLoop (p j) (~ i)) base)) j
                                             ((transport  i  helix (T.rec isGroupoidS¹  x  x)
                                                                              (rUnitₖ 1  intLoop (f x) i  j)))
                                                         (pos 0))))
                                  windingℤLoop (f x))))}
leftInv (suspFunCharac0 {A = A}) =
  SuspCohomElim {A = A} _  _  isSetSetTrunc _ _)
    λ f fId  cong ∣_∣₂ (funExt (linvLem 0 f fId))

-- We now prove that the alternative definition of cohomology is a cohomology theory.
private
  -- First, we need to that coHomFunctor' is contravariant
  theMorph :  {} (n : ) {A B : Pointed } (f : A →∙ B)
           AbGroupHom (coHomFunctor' n B) (coHomFunctor' n A)
  fst (theMorph (pos zero) f) = ST.map λ g   x  fst g (fst f x)) , cong (fst g) (snd f)  snd g
  snd (theMorph (pos zero) f) =
    makeIsGroupHom
      (ST.elim2  _ _  isOfHLevelPath 2 isSetSetTrunc _ _)
              λ f g  cong ∣_∣₂ (Σ≡Prop  _  isSetℤ _ _) refl))
  theMorph (pos (suc n)) f = coHomMorph _ (fst f)
  fst (theMorph (negsuc n) f) = idfun _
  snd (theMorph (negsuc n) f) = makeIsGroupHom λ _ _  refl

  compMorph :  {} (n : ) {A B C : Pointed } (g : B →∙ C) (f : A →∙ B) 
      compGroupHom (theMorph n g) (theMorph n f)  theMorph n (g ∘∙ f)
  compMorph (pos zero) g f =
    Σ≡Prop  _  isPropIsGroupHom _ _) (funExt (ST.elim  _  isSetPathImplicit)
      λ _  cong ∣_∣₂ (Σ≡Prop  _  isSetℤ _ _) refl)))
  compMorph (pos (suc n)) f g =
    Σ≡Prop  _  isPropIsGroupHom _ _) (funExt (ST.elim  _  isSetPathImplicit)
      λ _  refl))
  compMorph (negsuc n) g f =
    Σ≡Prop  _  isPropIsGroupHom _ _) refl

  idMorph :  {} (n : ) {A : Pointed }  theMorph n (idfun∙ A)  idGroupHom
  idMorph (pos zero) = Σ≡Prop  _  isPropIsGroupHom _ _)
    (funExt (ST.elim  _  isSetPathImplicit)
      λ _  cong ∣_∣₂ (Σ≡Prop  _  isSetℤ _ _) refl)))
  idMorph (pos (suc n)) = Σ≡Prop  _  isPropIsGroupHom _ _)
    (funExt (ST.elim  _  isSetPathImplicit) λ _  refl))
  idMorph (negsuc n) = refl

  open coHomTheory
  isCohomTheoryZ' :  {}  coHomTheory {} coHomFunctor'
  Hmap isCohomTheoryZ' = theMorph
  HMapComp isCohomTheoryZ' = compMorph
  HMapId isCohomTheoryZ' = idMorph

  -------------------------- Suspension --------------------------
  -- existence of suspension isomorphism
  fst (Suspension isCohomTheoryZ') (pos zero) {A = A} =
      invGroupEquiv
      (GroupIso→GroupEquiv
        ( invIso suspFunCharac0
        , makeIsGroupHom
            (ST.elim2  _ _  isOfHLevelPath 2 isSetSetTrunc _ _)
              λ f g  cong ∣_∣₂ (funExt λ { north  refl
                                          ; south  refl
                                          ; (merid a i) j  helper a (fst f) (fst g) j i}))))
    where
    helper : (a : typ A) (f g : typ A  coHomK 0)
           Kn→ΩKn+1 0 (f a +[ 0 ]ₖ g a)
            cong₂ _+ₖ_ (Kn→ΩKn+1 0 (f a)) (Kn→ΩKn+1 0 (g a))
    helper a f g = Kn→ΩKn+1-hom 0 (f a) (g a)
                 ∙≡+₁ (Kn→ΩKn+1 _ (f a)) (Kn→ΩKn+1 _ (g a))
  fst (Suspension isCohomTheoryZ') (pos (suc n)) {A = A} =
      invGroupEquiv
      (GroupIso→GroupEquiv
        ( invIso (suspFunCharac {A = A} n)
        , makeIsGroupHom
            (ST.elim2  _ _  isOfHLevelPath 2 isSetSetTrunc _ _)
              λ f g  cong ∣_∣₂ (funExt λ { north  refl
                                          ; south  refl
                                          ; (merid a i) j  helper a f g j i}))))
    where
    helper : (a : typ A) (f g : typ A  coHomK (suc n))
           Kn→ΩKn+1 (suc n) (f a +ₖ g a)
            cong₂ _+ₖ_ (Kn→ΩKn+1 (suc n) (f a)) (Kn→ΩKn+1 (suc n) (g a))
    helper a f g = Kn→ΩKn+1-hom (suc n) (f a) (g a)
                 ∙≡+₂ n (Kn→ΩKn+1 _ (f a)) (Kn→ΩKn+1 _ (g a))
  fst (Suspension isCohomTheoryZ') (negsuc zero) {A = A} =
      GroupIso→GroupEquiv
        ( isContr→Iso (H0-susp {A = _ , pt A}) isContrUnit*
        , makeIsGroupHom λ _ _  refl)
  fst (Suspension isCohomTheoryZ') (negsuc (suc n)) = idGroupEquiv

  -- naturality of the suspension isomorphism
  snd (Suspension (isCohomTheoryZ' {})) (f , p) (pos zero) =
    funExt (ST.elim  _  isOfHLevelPath 2 isSetSetTrunc _ _)
           λ {(f , _)  cong ∣_∣₂ (funExt λ {north  refl
                                          ; south  refl
                                          ; (merid a i)  refl})})
  snd (Suspension (isCohomTheoryZ' {})) (f , p) (pos (suc n)) =
    funExt (ST.elim  _  isOfHLevelPath 2 isSetSetTrunc _ _)
           λ f  cong ∣_∣₂ (funExt λ {north  refl
                                    ; south  refl
                                    ; (merid a i)  refl}))
  snd (Suspension (isCohomTheoryZ' {})) (f , p) (negsuc zero) = refl
  snd (Suspension (isCohomTheoryZ' {})) (f , p) (negsuc (suc n)) = refl

  -------------------------- Exactness ---------------------------
  Exactness isCohomTheoryZ' {A = A} {B = B} f n = isoToPath (exactnessIso n f)
    where
    exactnessIso : (n : ) (f : A →∙ B)
                 Iso (Ker (theMorph n f)) (Im (theMorph n (cfcod (fst f) , refl)))
    fun (exactnessIso (pos zero) (f , p)) =
      uncurry (ST.elim  _  isSetΠ λ _  isSetΣ isSetSetTrunc λ _  isProp→isSet isPropPropTrunc)
                     λ {(g , q) inker   g , q ∣₂
                                       , PT.rec isPropPropTrunc
                                               gId     { (inl tt)  0
                                                              ; (inr b)  g b
                                                              ; (push a i)  funExt⁻ (cong fst gId) a (~ i)}) , q ∣₂
                                                       , cong ∣_∣₂ (Σ≡Prop  _  isSetℤ _ _) refl) ∣₁)
                                              (Iso.fun PathIdTrunc₀Iso inker)})
    inv (exactnessIso (pos zero) (f , p)) =
      uncurry (ST.elim  _  isSetΠ λ _  isSetΣ isSetSetTrunc λ _  isOfHLevelPath 2 isSetSetTrunc _ _)
                λ {(g , q) inim'
                    g , q ∣₂
                   , PT.rec (isSetSetTrunc _ _)
                          (uncurry
                            (ST.elim  _  isSetΠ  _  isOfHLevelPath 2 isSetSetTrunc _ _))
                                    pushmap pushId'
                                      PT.rec (isSetSetTrunc _ _)
                                              pushId
                                                cong ∣_∣₂ (Σ≡Prop  _  isSetℤ _ _)
                                                             (funExt λ x  sym (funExt⁻ (cong fst pushId) (f x))
                                                                         ∙∙ cong (fst pushmap) (sym (push x)  push (pt A))
                                                                         ∙∙ (cong (fst pushmap  inr) p
                                                                            snd pushmap))))
                                             (Iso.fun PathIdTrunc₀Iso pushId'))))
                          inim'})
    rightInv (exactnessIso (pos zero) (f , p)) =
      uncurry (ST.elim  _  isSetΠ λ _  isOfHLevelPath 2
                                              (isSetΣ isSetSetTrunc
                                                       _  isProp→isSet isPropPropTrunc)) _ _)
                     λ {(p , q) _  Σ≡Prop  _  isPropPropTrunc) refl})
    leftInv (exactnessIso (pos zero) (f , p)) =
      uncurry (ST.elim  _  isSetΠ λ _  isOfHLevelPath 2
                                              (isSetΣ isSetSetTrunc
                                                       _  isProp→isSet (isSetSetTrunc _ _))) _ _)
                     λ {(p , q) _  Σ≡Prop  _  isSetSetTrunc _ _) refl})
    fun (exactnessIso (pos (suc n)) f) ker = (fst ker) , inIm-helper (fst ker) (snd ker)
      where
      inIm-helper : (x : coHom (suc n) (typ B))
                   isInKer (theMorph (pos (suc n)) {A = A} {B = B} f) x
                   isInIm (theMorph (pos (suc n)) {A = B} {B = _ , inr (pt B)} (cfcod (fst f) , refl)) x
      inIm-helper =
        coHomPointedElim _ (pt B)  _  isPropΠ λ _  isPropPropTrunc)
          λ g gId inker  PT.rec isPropPropTrunc
                                gIdTot     { (inl tt)  0ₖ _
                                                  ; (inr b)  g b
                                                  ; (push a i)  funExt⁻ gIdTot a (~ i)}) ∣₂
                                             , cong ∣_∣₂ (funExt λ b  refl) ∣₁)
                               (Iso.fun PathIdTrunc₀Iso inker)
    inv (exactnessIso (pos (suc n)) f) im = fst im , inKer-helper (fst im) (snd im)
      where
      inKer-helper : (x : coHom (suc n) (typ B))
                   isInIm (theMorph (pos (suc n)) {A = B} {B = _ , inr (pt B)} (cfcod (fst f) , refl)) x
                   isInKer (theMorph (pos (suc n)) {A = A} {B = B} f) x
      inKer-helper =
        coHomPointedElim _ (pt B)  _  isPropΠ λ _  isSetSetTrunc _ _)
          λ g gId  PT.rec (isSetSetTrunc _ _)
                          (uncurry λ cg p
                             subst (isInKer (coHomMorph (suc n) (fst f)))
                                     p
                                     (helper cg))
         where
         helper : (cg : _)  coHomFun (suc n) (fst f) (coHomFun (suc n) (cfcod (fst f)) cg)  0ₕ _
         helper = ST.elim  _  isOfHLevelPath 2 isSetSetTrunc _ _)
                        λ cg  T.rec (isProp→isOfHLevelSuc n (isSetSetTrunc _ _))
                                       p  (cong ∣_∣₂ (funExt λ x  cong cg (sym (push x))
                                                                     p)))
                                      (isConnectedPathKn _ (cg (inl tt)) (0ₖ (suc n)) .fst)
    rightInv (exactnessIso (pos (suc n)) f) _ = Σ≡Prop  _  isPropPropTrunc) refl
    leftInv (exactnessIso (pos (suc n)) f) _ = Σ≡Prop  _  isSetSetTrunc _ _) refl
    exactnessIso (negsuc n) (f , p) =
      isContr→Iso ((tt* , refl)
                   , λ {(tt* , p)  Σ≡Prop  _  isOfHLevelPath 1 isPropUnit* _ _)
                                            refl})
                   ((tt* ,  tt* , refl ∣₁)
                   , λ {(tt* , p)  Σ≡Prop  _  isPropPropTrunc)
                                            refl})

  -------------------------- Dimension ---------------------------
  Dimension isCohomTheoryZ' (pos zero) p = ⊥.rec (p refl)
  fst (Dimension isCohomTheoryZ' (pos (suc n)) _) = 0ₕ _
  snd (Dimension isCohomTheoryZ' (pos (suc n)) _) =
    ST.elim  _  isOfHLevelPath 2 isSetSetTrunc _ _)
           f  T.rec (isProp→isOfHLevelSuc n (isSetSetTrunc _ _))
                         f-true  T.rec (isProp→isOfHLevelSuc n (isSetSetTrunc _ _))
                                           f-false  cong ∣_∣₂ (funExt  {(lift true)  f-true
                                                                          ; (lift false)  f-false})))
                                          (isConnectedPathKn n (0ₖ _) (f (lift false)) .fst))
                        (isConnectedPathKn n (0ₖ _) (f (lift true)) .fst))
  Dimension isCohomTheoryZ' (negsuc n) _ = isContrUnit*

  ------------------------ Binary wedges -------------------------
  BinaryWedge isCohomTheoryZ' (pos zero) = GroupIso→GroupEquiv (H⁰Red-⋁ _ _)
  BinaryWedge isCohomTheoryZ' (pos (suc n)) = GroupIso→GroupEquiv (Hⁿ-⋁ _ _ n)
  BinaryWedge isCohomTheoryZ' (negsuc n) =
    GroupIso→GroupEquiv
      (compGroupIso (contrGroupIsoUnit isContrUnit*)
                    (invGroupIso (contrGroupIsoUnit (isOfHLevel× 0 isContrUnit* isContrUnit*))))

-- Substituting back for our original theory, we are done
isCohomTheoryZ :  {}  coHomTheory {} coHomFunctor
isCohomTheoryZ = subst coHomTheory (sym coHomFunctor≡coHomFunctor')
                       isCohomTheoryZ'