------------------------------------------------------------------------
-- The Agda standard library
--
-- The Cowriter type and some operations
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --sized-types #-}

module Codata.Sized.Cowriter where

open import Size
open import Level as L using (Level)
open import Codata.Sized.Thunk using (Thunk; force)
open import Codata.Sized.Conat
open import Codata.Sized.Delay using (Delay; later; now)
open import Codata.Sized.Stream as Stream using (Stream; _∷_)
open import Data.Unit.Base
open import Data.List.Base using (List; []; _∷_)
open import Data.List.NonEmpty.Base using (List⁺; _∷_)
open import Data.Nat.Base as  using (; zero; suc)
open import Data.Product.Base as Product using (_×_; _,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Data.Vec.Base using (Vec; []; _∷_)
open import Data.Vec.Bounded.Base as Vec≤ using (Vec≤; _,_)
open import Function.Base using (_$_; _∘′_; id)

private
  variable
    a b w x : Level
    A : Set a
    B : Set b
    W : Set w
    X : Set x

------------------------------------------------------------------------
-- Definition

data Cowriter (W : Set w) (A : Set a) (i : Size) : Set (a L.⊔ w) where
  [_] : A  Cowriter W A i
  _∷_ : W  Thunk (Cowriter W A) i  Cowriter W A i

infixr 5 _∷_

------------------------------------------------------------------------
-- Relationship to Delay.

fromDelay :  {i}  Delay A i  Cowriter  A i
fromDelay (now a)    = [ a ]
fromDelay (later da) = _  λ where .force  fromDelay (da .force)

toDelay :  {i}  Cowriter W A i  Delay A i
toDelay [ a ]    = now a
toDelay (_  ca) = later λ where .force  toDelay (ca .force)

------------------------------------------------------------------------
-- Basic functions.

fromStream :  {i}  Stream W i  Cowriter W A i
fromStream (w  ws) = w  λ where .force  fromStream (ws .force)

repeat : W  Cowriter W A 
repeat = fromStream ∘′ Stream.repeat

length :  {i}  Cowriter W A i  Conat i
length [ _ ]    = zero
length (w  cw) = suc λ where .force  length (cw .force)

splitAt :  (n : )  Cowriter W A   (Vec W n × Cowriter W A )  (Vec≤ W n × A)
splitAt zero    cw       = inj₁ ([] , cw)
splitAt (suc n) [ a ]    = inj₂ (Vec≤.[] , a)
splitAt (suc n) (w  cw) = Sum.map (Product.map₁ (w ∷_)) (Product.map₁ (w Vec≤.∷_))
                         $ splitAt n (cw .force)

take :  (n : )  Cowriter W A   Vec W n  (Vec≤ W n × A)
take n = Sum.map₁ Product.proj₁ ∘′ splitAt n

infixr 5 _++_ _⁺++_
_++_ :  {i}  List W  Cowriter W A i  Cowriter W A i
[]       ++ ca = ca
(w  ws) ++ ca = w  λ where .force  ws ++ ca

_⁺++_ :  {i}  List⁺ W  Thunk (Cowriter W A) i  Cowriter W A i
(w  ws) ⁺++ ca = w  λ where .force  ws ++ ca .force

concat :  {i}  Cowriter (List⁺ W) A i  Cowriter W A i
concat [ a ]    = [ a ]
concat (w  ca) = w ⁺++ λ where .force  concat (ca .force)

------------------------------------------------------------------------
-- Functor, Applicative and Monad

map :  {i}  (W  X)  (A  B)  Cowriter W A i  Cowriter X B i
map f g [ a ]    = [ g a ]
map f g (w  cw) = f w  λ where .force  map f g (cw .force)

map₁ :  {i}  (W  X)  Cowriter W A i  Cowriter X A i
map₁ f = map f id

map₂ :  {i}  (A  X)  Cowriter W A i  Cowriter W X i
map₂ = map id

ap :  {i}  Cowriter W (A  X) i  Cowriter W A i  Cowriter W X i
ap [ f ]    ca = map₂ f ca
ap (w  cf) ca = w  λ where .force  ap (cf .force) ca

infixl 1 _>>=_

_>>=_ :  {i}  Cowriter W A i  (A  Cowriter W X i)  Cowriter W X i
[ a ]    >>= f = f a
(w  ca) >>= f = w  λ where .force  ca .force >>= f

------------------------------------------------------------------------
-- Construction.

unfold :  {i}  (X  (W × X)  A)  X  Cowriter W A i
unfold next seed =
  Sum.[  where (w , seed′)  w  λ where .force  unfold next seed′)
      , [_]
      ] (next seed)