{-# OPTIONS --cubical-compatible --sized-types #-}
module Codata.Sized.Conat where
open import Size
open import Codata.Sized.Thunk
open import Data.Nat.Base using (ℕ ; zero ; suc)
open import Relation.Nullary
data Conat (i : Size) : Set where
zero : Conat i
suc : Thunk Conat i → Conat i
infinity : ∀ {i} → Conat i
infinity = suc λ where .force → infinity
fromℕ : ℕ → Conat ∞
fromℕ zero = zero
fromℕ (suc n) = suc λ where .force → fromℕ n
pred : ∀ {i} {j : Size< i} → Conat i → Conat j
pred zero = zero
pred (suc n) = n .force
infixl 6 _∸_ _+_ _ℕ+_ _+ℕ_
infixl 7 _*_
_∸_ : Conat ∞ → ℕ → Conat ∞
m ∸ zero = m
m ∸ suc n = pred m ∸ n
_ℕ+_ : ℕ → ∀ {i} → Conat i → Conat i
zero ℕ+ n = n
suc m ℕ+ n = suc λ where .force → m ℕ+ n
_+ℕ_ : ∀ {i} → Conat i → ℕ → Conat i
zero +ℕ n = fromℕ n
suc m +ℕ n = suc λ where .force → (m .force) +ℕ n
_+_ : ∀ {i} → Conat i → Conat i → Conat i
zero + n = n
suc m + n = suc λ where .force → (m .force) + n
_*_ : ∀ {i} → Conat i → Conat i → Conat i
m * zero = zero
zero * n = zero
suc m * suc n = suc λ where .force → n .force + (m .force * suc n)
infixl 6 _⊔_
infixl 7 _⊓_
_⊔_ : ∀ {i} → Conat i → Conat i → Conat i
zero ⊔ n = n
m ⊔ zero = m
suc m ⊔ suc n = suc λ where .force → m .force ⊔ n .force
_⊓_ : ∀ {i} → Conat i → Conat i → Conat i
zero ⊓ n = zero
m ⊓ zero = zero
suc m ⊓ suc n = suc λ where .force → m .force ⊓ n .force
data Finite : Conat ∞ → Set where
zero : Finite zero
suc : ∀ {n} → Finite (n .force) → Finite (suc n)
toℕ : ∀ {n} → Finite n → ℕ
toℕ zero = zero
toℕ (suc n) = suc (toℕ n)
¬Finite∞ : ¬ (Finite infinity)
¬Finite∞ (suc p) = ¬Finite∞ p
infix 4 _ℕ<_ _ℕ≤infinity _ℕ≤_
data _ℕ≤_ : ℕ → Conat ∞ → Set where
zℕ≤n : ∀ {n} → zero ℕ≤ n
sℕ≤s : ∀ {k n} → k ℕ≤ n .force → suc k ℕ≤ suc n
_ℕ<_ : ℕ → Conat ∞ → Set
k ℕ< n = suc k ℕ≤ n
_ℕ≤infinity : ∀ k → k ℕ≤ infinity
zero ℕ≤infinity = zℕ≤n
suc k ℕ≤infinity = sℕ≤s (k ℕ≤infinity)