------------------------------------------------------------------------
-- The Agda standard library
--
-- The Conat type and some operations
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --sized-types #-}

module Codata.Sized.Conat where

open import Size
open import Codata.Sized.Thunk

open import Data.Nat.Base using ( ; zero ; suc)
open import Relation.Nullary

------------------------------------------------------------------------
-- Definition and first values

data Conat (i : Size) : Set where
  zero : Conat i
  suc : Thunk Conat i  Conat i

infinity :  {i}  Conat i
infinity = suc λ where .force  infinity

fromℕ :   Conat 
fromℕ zero    = zero
fromℕ (suc n) = suc λ where .force  fromℕ n

------------------------------------------------------------------------
-- Arithmetic operations

pred :  {i} {j : Size< i}  Conat i  Conat j
pred zero    = zero
pred (suc n) = n .force

infixl 6 _∸_ _+_ _ℕ+_ _+ℕ_
infixl 7 _*_

_∸_ : Conat     Conat 
m  zero  = m
m  suc n = pred m  n

_ℕ+_ :    {i}  Conat i  Conat i
zero  ℕ+ n = n
suc m ℕ+ n = suc λ where .force  m ℕ+ n

_+ℕ_ :  {i}  Conat i    Conat i
zero  +ℕ n = fromℕ n
suc m +ℕ n = suc λ where .force  (m .force) +ℕ n

_+_ :  {i}  Conat i  Conat i  Conat i
zero  + n = n
suc m + n = suc λ where .force  (m .force) + n

_*_ :  {i}  Conat i  Conat i  Conat i
m     * zero  = zero
zero  * n     = zero
suc m * suc n = suc λ where .force  n .force + (m .force * suc n)

-- Max and Min

infixl 6 _⊔_
infixl 7 _⊓_

_⊔_ :  {i}  Conat i  Conat i  Conat i
zero   n     = n
m      zero  = m
suc m  suc n = suc λ where .force  m .force  n .force

_⊓_ :  {i}  Conat i  Conat i  Conat i
zero   n     = zero
m      zero  = zero
suc m  suc n = suc λ where .force  m .force  n .force

------------------------------------------------------------------------
-- Finiteness

data Finite : Conat   Set where
  zero : Finite zero
  suc  :  {n}  Finite (n .force)  Finite (suc n)

toℕ :  {n}  Finite n  
toℕ zero    = zero
toℕ (suc n) = suc (toℕ n)

¬Finite∞ : ¬ (Finite infinity)
¬Finite∞ (suc p) = ¬Finite∞ p

------------------------------------------------------------------------
-- Order wrt to Nat

infix 4 _ℕ<_ _ℕ≤infinity _ℕ≤_

data _ℕ≤_ :   Conat   Set where
  zℕ≤n :  {n}  zero ℕ≤ n
  sℕ≤s :  {k n}  k ℕ≤ n .force  suc k ℕ≤ suc n

_ℕ<_ :   Conat   Set
k ℕ< n = suc k ℕ≤ n

_ℕ≤infinity :  k  k ℕ≤ infinity
zero  ℕ≤infinity = zℕ≤n
suc k ℕ≤infinity = sℕ≤s (k ℕ≤infinity)