Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic properties of ℕᵇ
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Nat.Binary.Properties where

open import Algebra.Bundles
open import Algebra.Morphism.Structures
import Algebra.Morphism.MonoidMonomorphism as MonoidMonomorphism
open import Algebra.Consequences.Propositional using (comm∧distrˡ⇒distrʳ)
open import Data.Bool.Base using (if_then_else_; Bool; true; false)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Nat.Binary.Base
open import Data.Nat.Base as  using (; z≤n; s≤s; s<s⁻¹)
open import Data.Nat.DivMod using (_%_; _/_; m/n≤m; +-distrib-/-∣ˡ)
open import Data.Nat.Divisibility using (∣-refl)
import Data.Nat.Properties as 
open import Data.Nat.Solver using (module +-*-Solver)
open import Data.Product.Base using (_×_; _,_; proj₁; proj₂; )
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Function.Base using (_∘_; _$_; id)
open import Function.Definitions using (Injective; Surjective;
  Inverseˡ; Inverseʳ; Inverseᵇ)
open import Function.Consequences.Propositional
 using (strictlySurjective⇒surjective; strictlyInverseˡ⇒inverseˡ;
        strictlyInverseʳ⇒inverseʳ)
open import Level using (0ℓ)
open import Relation.Binary
open import Relation.Binary.Consequences using (trans∧irr⇒asym; tri⇒dec<)
open import Relation.Binary.Morphism
 using (IsRelHomomorphism; IsOrderHomomorphism; IsOrderMonomorphism)
import Relation.Binary.Morphism.OrderMonomorphism as OrderMonomorphism
open import Relation.Binary.PropositionalEquality.Algebra
  using (magma; isMagma)
open import Relation.Binary.PropositionalEquality.Core
  using (_≡_; _≢_; refl; cong; cong₂; sym; _≗_; trans; ≢-sym; subst₂;
        subst; resp₂)
open import Relation.Binary.PropositionalEquality.Properties
  using (isDecEquivalence; setoid; decSetoid; module ≡-Reasoning;
         isEquivalence)
open import Relation.Nullary using (¬_; yes; no)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Negation.Core using (contradiction)

open import Algebra.Definitions {A = ℕᵇ} _≡_
open import Algebra.Structures {A = ℕᵇ} _≡_
import Algebra.Properties.CommutativeSemigroup as CommSemigProp
import Algebra.Properties.CommutativeSemigroup ℕ.+-commutativeSemigroup
  as ℕ-+-semigroupProperties
import Relation.Binary.Construct.StrictToNonStrict _≡_ _<_
  as StrictToNonStrict
open +-*-Solver

private
  variable
    x : ℕᵇ

infix 4  _<?_ _≟_ _≤?_

------------------------------------------------------------------------
-- Properties of _≡_
------------------------------------------------------------------------

2[1+x]≢0 : 2[1+ x ]  0ᵇ
2[1+x]≢0 ()

1+[2x]≢0 : 1+[2 x ]  0ᵇ
1+[2x]≢0 ()

2[1+_]-injective : Injective _≡_ _≡_ 2[1+_]
2[1+_]-injective refl = refl

1+[2_]-injective : Injective _≡_ _≡_ 1+[2_]
1+[2_]-injective refl = refl

_≟_ : DecidableEquality ℕᵇ
zero      zero     =  yes refl
zero      2[1+ _ ] =  no λ()
zero      1+[2 _ ] =  no λ()
2[1+ _ ]  zero     =  no λ()
2[1+ x ]  2[1+ y ] =  Dec.map′ (cong 2[1+_]) 2[1+_]-injective (x  y)
2[1+ _ ]  1+[2 _ ] =  no λ()
1+[2 _ ]  zero     =  no λ()
1+[2 _ ]  2[1+ _ ] =  no λ()
1+[2 x ]  1+[2 y ] =  Dec.map′ (cong 1+[2_]) 1+[2_]-injective (x  y)

≡-isDecEquivalence : IsDecEquivalence {A = ℕᵇ} _≡_
≡-isDecEquivalence = isDecEquivalence _≟_

≡-setoid : Setoid 0ℓ 0ℓ
≡-setoid = setoid ℕᵇ

≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = decSetoid _≟_

------------------------------------------------------------------------
-- Properties of toℕ & fromℕ
------------------------------------------------------------------------

toℕ-double :  x  toℕ (double x)  2 ℕ.* (toℕ x)
toℕ-double zero     =  refl
toℕ-double 1+[2 x ] =  cong ((2 ℕ.*_)  ℕ.suc) (toℕ-double x)
toℕ-double 2[1+ x ] =  cong (2 ℕ.*_) (sym (ℕ.*-distribˡ-+ 2 1 (toℕ x)))

toℕ-suc :  x  toℕ (suc x)  ℕ.suc (toℕ x)
toℕ-suc zero     =  refl
toℕ-suc 2[1+ x ] =  cong (ℕ.suc  (2 ℕ.*_)) (toℕ-suc x)
toℕ-suc 1+[2 x ] =  ℕ.*-distribˡ-+ 2 1 (toℕ x)

toℕ-pred :  x  toℕ (pred x)  ℕ.pred (toℕ x)
toℕ-pred zero     =  refl
toℕ-pred 2[1+ x ] =  cong ℕ.pred $ sym $ ℕ.*-distribˡ-+ 2 1 (toℕ x)
toℕ-pred 1+[2 x ] =  toℕ-double x

toℕ-fromℕ' : toℕ  fromℕ'  id
toℕ-fromℕ' 0         = refl
toℕ-fromℕ' (ℕ.suc n) = begin
  toℕ (fromℕ' (ℕ.suc n))   ≡⟨⟩
  toℕ (suc (fromℕ' n))     ≡⟨ toℕ-suc (fromℕ' n) 
  ℕ.suc (toℕ (fromℕ' n))   ≡⟨ cong ℕ.suc (toℕ-fromℕ' n) 
  ℕ.suc n                 
  where open ≡-Reasoning

fromℕ≡fromℕ' : fromℕ  fromℕ'
fromℕ≡fromℕ' n = fromℕ-helper≡fromℕ' n n ℕ.≤-refl
  where
  split : ℕᵇ  Maybe Bool × ℕᵇ
  split zero     = nothing , zero
  split 2[1+ n ] = just false , n
  split 1+[2 n ] = just true , n

  head = proj₁  split
  tail = proj₂  split

  split-injective : Injective _≡_ _≡_ split
  split-injective {zero} {zero} refl = refl
  split-injective {2[1+ _ ]} {2[1+ _ ]} refl = refl
  split-injective {1+[2 _ ]} {1+[2 _ ]} refl = refl

  split-if :  x xs  split (if x then 1+[2 xs ] else 2[1+ xs ])  (just x , xs)
  split-if false xs = refl
  split-if true xs = refl

  head-suc :  n  head (suc (suc (suc n)))  head (suc n)
  head-suc zero = refl
  head-suc 2[1+ n ] = refl
  head-suc 1+[2 n ] = refl

  tail-suc :  n  suc (tail (suc n))  tail (suc (suc (suc n)))
  tail-suc zero = refl
  tail-suc 2[1+ n ] = refl
  tail-suc 1+[2 n ] = refl

  head-homo :  n  head (suc (fromℕ' n))  just (n % 2 ℕ.≡ᵇ 0)
  head-homo ℕ.zero = refl
  head-homo (ℕ.suc ℕ.zero) = refl
  head-homo (ℕ.suc (ℕ.suc n)) = trans (head-suc (fromℕ' n)) (head-homo n)

  open ≡-Reasoning

  tail-homo :  n  tail (suc (fromℕ' n))  fromℕ' (n / 2)
  tail-homo ℕ.zero = refl
  tail-homo (ℕ.suc ℕ.zero) = refl
  tail-homo (ℕ.suc (ℕ.suc n)) = begin
    tail (suc (fromℕ' (ℕ.suc (ℕ.suc n))))  ≡⟨ tail-suc (fromℕ' n) 
    suc (tail (suc (fromℕ' n)))            ≡⟨ cong suc (tail-homo n) 
    fromℕ' (ℕ.suc (n / 2))                 ≡⟨ cong fromℕ' (+-distrib-/-∣ˡ {2} n ∣-refl) 
    fromℕ' (ℕ.suc (ℕ.suc n) / 2)           

  fromℕ-helper≡fromℕ' :  n w  n ℕ.≤ w  fromℕ.helper n n w  fromℕ' n
  fromℕ-helper≡fromℕ' ℕ.zero w p = refl
  fromℕ-helper≡fromℕ' (ℕ.suc n) (ℕ.suc w) (s≤s n≤w) =
    split-injective (begin
      split (fromℕ.helper n (ℕ.suc n) (ℕ.suc w))         ≡⟨ split-if _ _ 
      just (n % 2 ℕ.≡ᵇ 0) , fromℕ.helper n (n / 2) w     ≡⟨ cong (_ ,_) rec-n/2 
      just (n % 2 ℕ.≡ᵇ 0) , fromℕ' (n / 2)               ≡⟨ cong₂ _,_ (head-homo n) (tail-homo n) 
      head (fromℕ' (ℕ.suc n)) , tail (fromℕ' (ℕ.suc n))  ≡⟨⟩
      split (fromℕ' (ℕ.suc n))                           )
    where rec-n/2 = fromℕ-helper≡fromℕ' (n / 2) w (ℕ.≤-trans (m/n≤m n 2) n≤w)

toℕ-fromℕ : toℕ  fromℕ  id
toℕ-fromℕ n rewrite fromℕ≡fromℕ' n = toℕ-fromℕ' n

toℕ-injective : Injective _≡_ _≡_ toℕ
toℕ-injective {zero}     {zero}     _               =  refl
toℕ-injective {2[1+ x ]} {2[1+ y ]} 2[1+xN]≡2[1+yN] =  cong 2[1+_] x≡y
  where
  1+xN≡1+yN = ℕ.*-cancelˡ-≡ (ℕ.suc _) (ℕ.suc _) 2 2[1+xN]≡2[1+yN]
  xN≡yN     = cong ℕ.pred 1+xN≡1+yN
  x≡y       = toℕ-injective xN≡yN

toℕ-injective {2[1+ x ]} {1+[2 y ]} 2[1+xN]≡1+2yN =
  contradiction 2[1+xN]≡1+2yN (ℕ.even≢odd (ℕ.suc (toℕ x)) (toℕ y))

toℕ-injective {1+[2 x ]} {2[1+ y ]} 1+2xN≡2[1+yN] =
  contradiction (sym 1+2xN≡2[1+yN]) (ℕ.even≢odd (ℕ.suc (toℕ y)) (toℕ x))

toℕ-injective {1+[2 x ]} {1+[2 y ]} 1+2xN≡1+2yN =  cong 1+[2_] x≡y
  where
  2xN≡2yN = cong ℕ.pred 1+2xN≡1+2yN
  xN≡yN   = ℕ.*-cancelˡ-≡ _ _ 2 2xN≡2yN
  x≡y     = toℕ-injective xN≡yN

toℕ-surjective : Surjective _≡_ _≡_ toℕ
toℕ-surjective = strictlySurjective⇒surjective  n  fromℕ n , toℕ-fromℕ n)

toℕ-isRelHomomorphism : IsRelHomomorphism _≡_ _≡_ toℕ
toℕ-isRelHomomorphism = record
  { cong = cong toℕ
  }

fromℕ-injective : Injective _≡_ _≡_ fromℕ
fromℕ-injective {x} {y} f[x]≡f[y] = begin
  x             ≡⟨ sym (toℕ-fromℕ x) 
  toℕ (fromℕ x) ≡⟨ cong toℕ f[x]≡f[y] 
  toℕ (fromℕ y) ≡⟨ toℕ-fromℕ y 
  y             
  where open ≡-Reasoning

fromℕ-toℕ : fromℕ  toℕ  id
fromℕ-toℕ = toℕ-injective  toℕ-fromℕ  toℕ

toℕ-inverseˡ : Inverseˡ _≡_ _≡_ toℕ fromℕ
toℕ-inverseˡ = strictlyInverseˡ⇒inverseˡ {f⁻¹ = fromℕ} toℕ toℕ-fromℕ

toℕ-inverseʳ : Inverseʳ _≡_ _≡_ toℕ fromℕ
toℕ-inverseʳ = strictlyInverseʳ⇒inverseʳ toℕ fromℕ-toℕ

toℕ-inverseᵇ : Inverseᵇ _≡_ _≡_ toℕ fromℕ
toℕ-inverseᵇ = toℕ-inverseˡ , toℕ-inverseʳ

fromℕ-pred :  n  fromℕ (ℕ.pred n)  pred (fromℕ n)
fromℕ-pred n = begin
  fromℕ (ℕ.pred n)        ≡⟨ cong (fromℕ  ℕ.pred) (sym (toℕ-fromℕ n)) 
  fromℕ (ℕ.pred (toℕ y))  ≡⟨ cong fromℕ (sym (toℕ-pred y)) 
  fromℕ (toℕ (pred y))    ≡⟨ fromℕ-toℕ (pred y) 
  pred y                  ≡⟨ refl 
  pred (fromℕ n)          
  where open ≡-Reasoning;  y = fromℕ n

x≡0⇒toℕ[x]≡0 : x  zero  toℕ x  0
x≡0⇒toℕ[x]≡0 {zero} _ = refl

toℕ[x]≡0⇒x≡0 : toℕ x  0  x  zero
toℕ[x]≡0⇒x≡0 {zero} _ = refl

------------------------------------------------------------------------
-- Properties of _<_
------------------------------------------------------------------------
-- Basic properties

x≮0 : x  zero
x≮0 ()

x≢0⇒x>0 : x  zero  x > zero
x≢0⇒x>0 {zero}     0≢0 =  contradiction refl 0≢0
x≢0⇒x>0 {2[1+ _ ]} _   =  0<even
x≢0⇒x>0 {1+[2 _ ]} _   =  0<odd

1+[2x]<2[1+x] :  x  1+[2 x ] < 2[1+ x ]
1+[2x]<2[1+x] x =  odd<even (inj₂ refl)

<⇒≢ : _<_  _≢_
<⇒≢ (even<even x<x) refl = <⇒≢ x<x refl
<⇒≢ (odd<odd   x<x) refl = <⇒≢ x<x refl

>⇒≢ : _>_  _≢_
>⇒≢ y<x =  ≢-sym (<⇒≢ y<x)

≡⇒≮ : _≡_  _≮_
≡⇒≮ x≡y x<y =  <⇒≢ x<y x≡y

≡⇒≯ : _≡_  _≯_
≡⇒≯ x≡y x>y =  >⇒≢ x>y x≡y

<⇒≯ : _<_  _≯_
<⇒≯ (even<even x<y)        (even<even y<x)        = <⇒≯ x<y y<x
<⇒≯ (even<odd x<y)         (odd<even (inj₁ y<x))  = <⇒≯ x<y y<x
<⇒≯ (even<odd x<y)         (odd<even (inj₂ refl)) = <⇒≢ x<y refl
<⇒≯ (odd<even (inj₁ x<y))  (even<odd y<x)         = <⇒≯ x<y y<x
<⇒≯ (odd<even (inj₂ refl)) (even<odd y<x)         = <⇒≢ y<x refl
<⇒≯ (odd<odd x<y)          (odd<odd y<x)          = <⇒≯ x<y y<x

>⇒≮ : _>_  _≮_
>⇒≮ y<x =  <⇒≯ y<x

<⇒≤ : _<_  _≤_
<⇒≤ = inj₁

------------------------------------------------------------------------
-- Properties of _<_ and toℕ & fromℕ.

toℕ-mono-< : toℕ Preserves _<_  ℕ._<_
toℕ-mono-< {zero}     {2[1+ _ ]} _               =  ℕ.0<1+n
toℕ-mono-< {zero}     {1+[2 _ ]} _               =  ℕ.0<1+n
toℕ-mono-< {2[1+ x ]} {2[1+ y ]} (even<even x<y) =  begin
  ℕ.suc (2 ℕ.* (ℕ.suc xN))    ≤⟨ ℕ.+-monoʳ-≤ 1 (ℕ.*-monoʳ-≤ 2 xN<yN) 
  ℕ.suc (2 ℕ.* yN)            ≤⟨ ℕ.n≤1+n _ 
  2 ℕ.+ (2 ℕ.* yN)            ≡⟨ sym (ℕ.*-distribˡ-+ 2 1 yN) 
  2 ℕ.* (ℕ.suc yN)            
  where open ℕ.≤-Reasoning;  xN = toℕ x;  yN = toℕ y;  xN<yN = toℕ-mono-< x<y
toℕ-mono-< {2[1+ x ]} {1+[2 y ]} (even<odd x<y) =
  ℕ.+-monoʳ-≤ 1 (ℕ.*-monoʳ-≤ 2 (toℕ-mono-< x<y))
toℕ-mono-< {1+[2 x ]} {2[1+ y ]} (odd<even (inj₁ x<y)) =   begin
  ℕ.suc (ℕ.suc (2 ℕ.* xN))    ≡⟨⟩
  2 ℕ.+ (2 ℕ.* xN)            ≡⟨ sym (ℕ.*-distribˡ-+ 2 1 xN) 
  2 ℕ.* (ℕ.suc xN)            ≤⟨ ℕ.*-monoʳ-≤ 2 xN<yN 
  2 ℕ.* yN                    ≤⟨ ℕ.*-monoʳ-≤ 2 (ℕ.n≤1+n _) 
  2 ℕ.* (ℕ.suc yN)            
  where open ℕ.≤-Reasoning;  xN = toℕ x;  yN = toℕ y;  xN<yN = toℕ-mono-< x<y
toℕ-mono-< {1+[2 x ]} {2[1+ .x ]} (odd<even (inj₂ refl)) =
  ℕ.≤-reflexive (sym (ℕ.*-distribˡ-+ 2 1 (toℕ x)))
toℕ-mono-< {1+[2 x ]} {1+[2 y ]} (odd<odd x<y) =  ℕ.+-monoʳ-< 1 (ℕ.*-monoʳ-< 2 xN<yN)
  where xN = toℕ x;  yN = toℕ y;  xN<yN = toℕ-mono-< x<y

toℕ-cancel-< :  {x y}  toℕ x ℕ.< toℕ y  x < y
toℕ-cancel-< {zero}     {2[1+ y ]} x<y = 0<even
toℕ-cancel-< {zero}     {1+[2 y ]} x<y = 0<odd
toℕ-cancel-< {2[1+ x ]} {2[1+ y ]} x<y =
  even<even (toℕ-cancel-< (s<s⁻¹ (ℕ.*-cancelˡ-< 2 _ _ x<y)))
toℕ-cancel-< {2[1+ x ]} {1+[2 y ]} x<y
  rewrite ℕ.*-distribˡ-+ 2 1 (toℕ x) =
  even<odd (toℕ-cancel-< (ℕ.*-cancelˡ-< 2 _ _ (ℕ.≤-trans (s≤s (ℕ.n≤1+n _)) (s<s⁻¹ x<y))))
toℕ-cancel-< {1+[2 x ]} {2[1+ y ]} x<y with toℕ x ℕ.≟ toℕ y
... | yes x≡y = odd<even (inj₂ (toℕ-injective x≡y))
... | no  x≢y
  rewrite ℕ.+-suc (toℕ y) (toℕ y ℕ.+ 0) =
  odd<even (inj₁ (toℕ-cancel-< (ℕ.≤∧≢⇒< (ℕ.*-cancelˡ-≤ 2 (ℕ.+-cancelˡ-≤ 2 _ _ x<y)) x≢y)))
toℕ-cancel-< {1+[2 x ]} {1+[2 y ]} x<y =
  odd<odd (toℕ-cancel-< (ℕ.*-cancelˡ-< 2 _ _ (s<s⁻¹ x<y)))

fromℕ-cancel-< :  {x y}  fromℕ x < fromℕ y  x ℕ.< y
fromℕ-cancel-< = subst₂ ℕ._<_ (toℕ-fromℕ _) (toℕ-fromℕ _)  toℕ-mono-<

fromℕ-mono-< : fromℕ Preserves ℕ._<_  _<_
fromℕ-mono-< = toℕ-cancel-<  subst₂ ℕ._<_ (sym (toℕ-fromℕ _)) (sym (toℕ-fromℕ _))

toℕ-isHomomorphism-< : IsOrderHomomorphism _≡_ _≡_ _<_ ℕ._<_ toℕ
toℕ-isHomomorphism-< = record
  { cong = cong toℕ
  ; mono = toℕ-mono-<
  }

toℕ-isMonomorphism-< : IsOrderMonomorphism _≡_ _≡_ _<_ ℕ._<_ toℕ
toℕ-isMonomorphism-< = record
  { isOrderHomomorphism = toℕ-isHomomorphism-<
  ; injective           = toℕ-injective
  ; cancel              = toℕ-cancel-<
  }

------------------------------------------------------------------------
-- Relational properties of _<_

<-irrefl : Irreflexive _≡_ _<_
<-irrefl refl (even<even x<x) =  <-irrefl refl x<x
<-irrefl refl (odd<odd x<x)   =  <-irrefl refl x<x

<-trans : Transitive _<_
<-trans {zero} {_}      {2[1+ _ ]} _  _        =  0<even
<-trans {zero} {_}      {1+[2 _ ]} _  _        =  0<odd
<-trans (even<even x<y) (even<even y<z)        =  even<even (<-trans x<y y<z)
<-trans (even<even x<y) (even<odd y<z)         =  even<odd (<-trans x<y y<z)
<-trans (even<odd x<y)  (odd<even (inj₁ y<z))  =  even<even (<-trans x<y y<z)
<-trans (even<odd x<y)  (odd<even (inj₂ refl)) =  even<even x<y
<-trans (even<odd x<y)  (odd<odd y<z)          =  even<odd (<-trans x<y y<z)
<-trans (odd<even (inj₁ x<y))  (even<even y<z) =  odd<even (inj₁ (<-trans x<y y<z))
<-trans (odd<even (inj₂ refl)) (even<even x<z) =  odd<even (inj₁ x<z)
<-trans (odd<even (inj₁ x<y))  (even<odd y<z)  =  odd<odd (<-trans x<y y<z)
<-trans (odd<even (inj₂ refl)) (even<odd x<z)  =  odd<odd x<z
<-trans (odd<odd x<y) (odd<even (inj₁ y<z))    =  odd<even (inj₁ (<-trans x<y y<z))
<-trans (odd<odd x<y) (odd<even (inj₂ refl))   =  odd<even (inj₁ x<y)
<-trans (odd<odd x<y) (odd<odd y<z)            =  odd<odd (<-trans x<y y<z)

<-asym : Asymmetric _<_
<-asym {x} {y} = trans∧irr⇒asym refl <-trans <-irrefl {x} {y}

-- Should not be implemented via the morphism `toℕ` in order to
-- preserve O(log n) time requirement.
<-cmp : Trichotomous _≡_ _<_
<-cmp zero     zero      = tri≈ x≮0    refl  x≮0
<-cmp zero     2[1+ _ ]  = tri< 0<even (λ()) x≮0
<-cmp zero     1+[2 _ ]  = tri< 0<odd  (λ()) x≮0
<-cmp 2[1+ _ ] zero      = tri> (λ())  (λ()) 0<even
<-cmp 2[1+ x ] 2[1+ y ]  with <-cmp x y
... | tri< x<y _    _   =  tri< lt (<⇒≢ lt) (<⇒≯ lt)  where lt = even<even x<y
... | tri≈ _   refl _   =  tri≈ (<-irrefl refl) refl (<-irrefl refl)
... | tri> _   _    x>y =  tri> (>⇒≮ gt) (>⇒≢ gt) gt  where gt = even<even x>y
<-cmp 2[1+ x ] 1+[2 y ]  with <-cmp x y
... | tri< x<y _    _ =  tri< lt (<⇒≢ lt) (<⇒≯ lt)  where lt = even<odd x<y
... | tri≈ _   refl _ =  tri> (>⇒≮ gt) (>⇒≢ gt) gt
  where
  gt = subst (_< 2[1+ x ]) refl (1+[2x]<2[1+x] x)
... | tri> _ _ y<x =  tri> (>⇒≮ gt) (>⇒≢ gt) gt  where gt = odd<even (inj₁ y<x)
<-cmp 1+[2 _ ] zero =  tri> (>⇒≮ gt) (>⇒≢ gt) gt  where gt = 0<odd
<-cmp 1+[2 x ] 2[1+ y ]  with <-cmp x y
... | tri< x<y _ _ =  tri< lt (<⇒≢ lt) (<⇒≯ lt)  where lt = odd<even (inj₁ x<y)
... | tri≈ _ x≡y _ =  tri< lt (<⇒≢ lt) (<⇒≯ lt)  where lt = odd<even (inj₂ x≡y)
... | tri> _ _ x>y =  tri> (>⇒≮ gt) (>⇒≢ gt) gt  where gt = even<odd x>y
<-cmp 1+[2 x ] 1+[2 y ]  with <-cmp x y
... | tri< x<y _  _   =  tri< lt (<⇒≢ lt) (<⇒≯ lt)  where lt = odd<odd x<y
... | tri≈ _ refl _   =  tri≈ (≡⇒≮ refl) refl (≡⇒≯ refl)
... | tri> _ _    x>y =  tri> (>⇒≮ gt) (>⇒≢ gt) gt  where gt = odd<odd x>y

_<?_ : Decidable _<_
_<?_ = tri⇒dec< <-cmp

------------------------------------------------------------------------
-- Structures for _<_

<-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_
<-isStrictPartialOrder = record
  { isEquivalence = isEquivalence
  ; irrefl        = <-irrefl
  ; trans         = <-trans
  ; <-resp-≈      = resp₂ _<_
  }

<-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_
<-isStrictTotalOrder = record
  { isStrictPartialOrder = <-isStrictPartialOrder
  ; compare              = <-cmp
  }

------------------------------------------------------------------------
-- Bundles for _<_

<-strictPartialOrder : StrictPartialOrder _ _ _
<-strictPartialOrder = record
  { isStrictPartialOrder = <-isStrictPartialOrder
  }

<-strictTotalOrder : StrictTotalOrder _ _ _
<-strictTotalOrder = record
  { isStrictTotalOrder =  <-isStrictTotalOrder
  }

------------------------------------------------------------------------
-- Other properties of _<_

x<2[1+x] :  x  x < 2[1+ x ]
x<1+[2x] :  x  x < 1+[2 x ]

x<2[1+x] zero     = 0<even
x<2[1+x] 2[1+ x ] = even<even (x<2[1+x] x)
x<2[1+x] 1+[2 x ] = odd<even (inj₁ (x<1+[2x] x))

x<1+[2x] zero     = 0<odd
x<1+[2x] 2[1+ x ] = even<odd (x<2[1+x] x)
x<1+[2x] 1+[2 x ] = odd<odd (x<1+[2x] x)

------------------------------------------------------------------------
-- Properties of _≤_
------------------------------------------------------------------------
-- Basic properties

<⇒≱ : _<_  _≱_
<⇒≱ x<y (inj₁ y<x) =  contradiction y<x (<⇒≯ x<y)
<⇒≱ x<y (inj₂ y≡x) =  contradiction (sym y≡x) (<⇒≢ x<y)

≤⇒≯ : _≤_  _≯_
≤⇒≯ x≤y x>y =  <⇒≱ x>y x≤y

≮⇒≥ : _≮_  _≥_
≮⇒≥ {x} {y} x≮y  with <-cmp x y
... | tri< lt _  _   =  contradiction lt x≮y
... | tri≈ _  eq _   =  inj₂ (sym eq)
... | tri> _  _  y<x =  <⇒≤ y<x

≰⇒> : _≰_  _>_
≰⇒> {x} {y} x≰y  with <-cmp x y
... | tri< lt _  _   =  contradiction (<⇒≤ lt) x≰y
... | tri≈ _  eq _   =  contradiction (inj₂ eq) x≰y
... | tri> _  _  x>y =  x>y

≤∧≢⇒< :  {x y}  x  y  x  y  x < y
≤∧≢⇒< (inj₁ x<y) _   =  x<y
≤∧≢⇒< (inj₂ x≡y) x≢y =  contradiction x≡y x≢y

0≤x :  x  zero  x
0≤x zero     =  inj₂ refl
0≤x 2[1+ _ ] =  inj₁ 0<even
0≤x 1+[2 x ] =  inj₁ 0<odd

x≤0⇒x≡0 : x  zero  x  zero
x≤0⇒x≡0 (inj₂ x≡0) = x≡0

------------------------------------------------------------------------
-- Properties of _<_ and toℕ & fromℕ.

fromℕ-mono-≤ : fromℕ Preserves ℕ._≤_  _≤_
fromℕ-mono-≤ m≤n  with ℕ.m≤n⇒m<n∨m≡n m≤n
... | inj₁ m<n =  inj₁ (fromℕ-mono-< m<n)
... | inj₂ m≡n =  inj₂ (cong fromℕ m≡n)

toℕ-mono-≤ : toℕ Preserves _≤_  ℕ._≤_
toℕ-mono-≤ (inj₁ x<y)  =  ℕ.<⇒≤ (toℕ-mono-< x<y)
toℕ-mono-≤ (inj₂ refl) =  ℕ.≤-reflexive refl

toℕ-cancel-≤ :  {x y}  toℕ x ℕ.≤ toℕ y  x  y
toℕ-cancel-≤ = subst₂ _≤_ (fromℕ-toℕ _) (fromℕ-toℕ _)  fromℕ-mono-≤

fromℕ-cancel-≤ :  {x y}  fromℕ x  fromℕ y  x ℕ.≤ y
fromℕ-cancel-≤ = subst₂ ℕ._≤_ (toℕ-fromℕ _) (toℕ-fromℕ _)  toℕ-mono-≤

toℕ-isHomomorphism-≤ : IsOrderHomomorphism _≡_ _≡_ _≤_ ℕ._≤_ toℕ
toℕ-isHomomorphism-≤ = record
  { cong = cong toℕ
  ; mono = toℕ-mono-≤
  }

toℕ-isMonomorphism-≤ : IsOrderMonomorphism _≡_ _≡_ _≤_ ℕ._≤_ toℕ
toℕ-isMonomorphism-≤ = record
  { isOrderHomomorphism = toℕ-isHomomorphism-≤
  ; injective           = toℕ-injective
  ; cancel              = toℕ-cancel-≤
  }

------------------------------------------------------------------------
-- Relational properties of _≤_

≤-refl : Reflexive _≤_
≤-refl =  inj₂ refl

≤-reflexive : _≡_  _≤_
≤-reflexive {x} {_} refl =  ≤-refl {x}

≤-trans : Transitive _≤_
≤-trans = StrictToNonStrict.trans isEquivalence (resp₂ _<_) <-trans

<-≤-trans :  {x y z}  x < y  y  z  x < z
<-≤-trans x<y (inj₁ y<z)  =  <-trans x<y y<z
<-≤-trans x<y (inj₂ refl) =  x<y

≤-<-trans :  {x y z}  x  y  y < z  x < z
≤-<-trans (inj₁ x<y)  y<z =  <-trans x<y y<z
≤-<-trans (inj₂ refl) y<z =  y<z

≤-antisym : Antisymmetric _≡_ _≤_
≤-antisym = StrictToNonStrict.antisym isEquivalence <-trans <-irrefl

≤-total : Total _≤_
≤-total x y with <-cmp x y
... | tri< x<y _  _   = inj₁ (<⇒≤ x<y)
... | tri≈ _  x≡y _   = inj₁ (≤-reflexive x≡y)
... | tri> _  _   y<x = inj₂ (<⇒≤ y<x)

-- Should not be implemented via the morphism `toℕ` in order to
-- preserve O(log n) time requirement.
_≤?_ : Decidable _≤_
x ≤? y with <-cmp x y
... | tri< x<y _   _   = yes (<⇒≤ x<y)
... | tri≈ _   x≡y _   = yes (≤-reflexive x≡y)
... | tri> _   _   y<x = no (<⇒≱ y<x)


------------------------------------------------------------------------
-- Structures

≤-isPreorder : IsPreorder _≡_ _≤_
≤-isPreorder = record
  { isEquivalence = isEquivalence
  ; reflexive     = ≤-reflexive
  ; trans         = ≤-trans
  }

≤-isPartialOrder : IsPartialOrder _≡_ _≤_
≤-isPartialOrder = record
  { isPreorder = ≤-isPreorder
  ; antisym    = ≤-antisym
  }

≤-isTotalOrder : IsTotalOrder _≡_ _≤_
≤-isTotalOrder = record
  { isPartialOrder = ≤-isPartialOrder
  ; total          = ≤-total
  }

≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_
≤-isDecTotalOrder = record
  { isTotalOrder = ≤-isTotalOrder
  ; _≟_          = _≟_
  ; _≤?_         = _≤?_
  }

------------------------------------------------------------------------
-- Bundles

≤-preorder : Preorder 0ℓ 0ℓ 0ℓ
≤-preorder = record
  { isPreorder = ≤-isPreorder
  }

≤-partialOrder : Poset 0ℓ 0ℓ 0ℓ
≤-partialOrder = record
  { isPartialOrder = ≤-isPartialOrder
  }

≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ
≤-totalOrder = record
  { isTotalOrder = ≤-isTotalOrder
  }

≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ
≤-decTotalOrder = record
  { isDecTotalOrder = ≤-isDecTotalOrder
  }

------------------------------------------------------------------------
-- Equational reasoning for _≤_ and _<_

module ≤-Reasoning where

  open import Relation.Binary.Reasoning.Base.Triple
    ≤-isPreorder
    <-asym
    <-trans
    (resp₂ _<_)
    <⇒≤
    <-≤-trans
    ≤-<-trans
    public
    hiding (step-≈; step-≈˘; step-≈-⟩; step-≈-⟨)

------------------------------------------------------------------------
-- Properties of _<ℕ_
------------------------------------------------------------------------

<⇒<ℕ :  {x y}  x < y  x <ℕ y
<⇒<ℕ x<y = toℕ-mono-< x<y

<ℕ⇒< :  {x y}  x <ℕ y  x < y
<ℕ⇒< {x} {y} t[x]<t[y] = begin-strict
  x             ≡⟨ sym (fromℕ-toℕ x) 
  fromℕ (toℕ x) <⟨ fromℕ-mono-< t[x]<t[y] 
  fromℕ (toℕ y) ≡⟨ fromℕ-toℕ y 
  y             
  where open ≤-Reasoning

------------------------------------------------------------------------
-- Properties of _+_

-- toℕ/fromℕ are homomorphisms for _+_

toℕ-homo-+ :  x y  toℕ (x + y)  toℕ x ℕ.+ toℕ y
toℕ-homo-+ zero     _        = refl
toℕ-homo-+ 2[1+ x ] zero     = cong ℕ.suc (sym (ℕ.+-identityʳ _))
toℕ-homo-+ 1+[2 x ] zero     = cong ℕ.suc (sym (ℕ.+-identityʳ _))
toℕ-homo-+ 2[1+ x ] 2[1+ y ] = begin
  toℕ (2[1+ x ] + 2[1+ y ])          ≡⟨⟩
  toℕ 2[1+ (suc (x + y)) ]           ≡⟨⟩
  2 ℕ.* (1 ℕ.+ (toℕ (suc (x + y))))  ≡⟨ cong ((2 ℕ.*_)  ℕ.suc) (toℕ-suc (x + y)) 
  2 ℕ.* (2 ℕ.+ toℕ (x + y))          ≡⟨ cong ((2 ℕ.*_)  (2 ℕ.+_)) (toℕ-homo-+ x y) 
  2 ℕ.* (2 ℕ.+ (toℕ x ℕ.+ toℕ y))    ≡⟨ solve 2  m n  con 2 :* (con 2 :+ (m :+ n))  :=
                                          con 2 :* (con 1 :+ m) :+ con 2 :* (con 1 :+ n))
                                          refl (toℕ x) (toℕ y) 
  toℕ 2[1+ x ] ℕ.+ toℕ 2[1+ y ]      
  where open ≡-Reasoning

toℕ-homo-+ 2[1+ x ] 1+[2 y ] = begin
  toℕ (2[1+ x ] + 1+[2 y ])             ≡⟨⟩
  toℕ (suc 2[1+ (x + y) ])              ≡⟨ toℕ-suc 2[1+ (x + y) ] 
  ℕ.suc (toℕ 2[1+ (x + y) ])            ≡⟨⟩
  ℕ.suc (2 ℕ.* (ℕ.suc (toℕ (x + y))))   ≡⟨ cong  v  ℕ.suc (2 ℕ.* ℕ.suc v)) (toℕ-homo-+ x y) 
  ℕ.suc (2 ℕ.* (ℕ.suc (m ℕ.+ n)))       ≡⟨ solve 2  m n  con 1 :+ (con 2 :* (con 1 :+ (m :+ n))) :=
                                             con 2 :* (con 1 :+ m) :+ (con 1 :+ (con 2 :* n)))
                                             refl m n 
  (2 ℕ.* ℕ.suc m) ℕ.+ (ℕ.suc (2 ℕ.* n)) ≡⟨⟩
  toℕ 2[1+ x ] ℕ.+ toℕ 1+[2 y ]         
  where open ≡-Reasoning;  m = toℕ x; n = toℕ y

toℕ-homo-+ 1+[2 x ] 2[1+ y ] = begin
  toℕ (1+[2 x ] + 2[1+ y ])                 ≡⟨⟩
  toℕ (suc 2[1+ (x + y) ])                  ≡⟨ toℕ-suc 2[1+ (x + y) ] 
  ℕ.suc (toℕ 2[1+ (x + y) ])                ≡⟨⟩
  ℕ.suc (2 ℕ.* (ℕ.suc (toℕ (x + y))))       ≡⟨ cong (ℕ.suc  (2 ℕ.*_)  ℕ.suc) (toℕ-homo-+ x y) 
  ℕ.suc (2 ℕ.* (ℕ.suc (m ℕ.+ n)))           ≡⟨ solve 2  m n  con 1 :+ (con 2 :* (con 1 :+ (m :+ n))) :=
                                                 (con 1 :+ (con 2 :* m)) :+ (con 2 :* (con 1 :+ n)))
                                                 refl m n 
  (ℕ.suc (2 ℕ.* m)) ℕ.+ (2 ℕ.* (ℕ.suc n))   ≡⟨⟩
  toℕ 1+[2 x ] ℕ.+ toℕ 2[1+ y ]             
  where open ≡-Reasoning;  m = toℕ x;  n = toℕ y

toℕ-homo-+ 1+[2 x ] 1+[2 y ] = begin
  toℕ (1+[2 x ] + 1+[2 y ])               ≡⟨⟩
  toℕ (suc 1+[2 (x + y) ])                ≡⟨ toℕ-suc 1+[2 (x + y) ] 
  ℕ.suc (toℕ 1+[2 (x + y) ])              ≡⟨⟩
  ℕ.suc (ℕ.suc (2 ℕ.* (toℕ (x + y))))     ≡⟨ cong (ℕ.suc  ℕ.suc  (2 ℕ.*_)) (toℕ-homo-+ x y) 
  ℕ.suc (ℕ.suc (2 ℕ.* (m ℕ.+ n)))         ≡⟨ solve 2  m n  con 1 :+ (con 1 :+ (con 2 :* (m :+ n))) :=
                                               (con 1 :+ (con 2 :* m)) :+ (con 1 :+ (con 2 :* n)))
                                               refl m n 
  (ℕ.suc (2 ℕ.* m)) ℕ.+ (ℕ.suc (2 ℕ.* n)) ≡⟨⟩
  toℕ 1+[2 x ] ℕ.+ toℕ 1+[2 y ]           
  where open ≡-Reasoning;  m = toℕ x;  n = toℕ y

toℕ-isMagmaHomomorphism-+ : IsMagmaHomomorphism +-rawMagma ℕ.+-rawMagma toℕ
toℕ-isMagmaHomomorphism-+ = record
  { isRelHomomorphism = toℕ-isRelHomomorphism
  ; homo              = toℕ-homo-+
  }

toℕ-isMonoidHomomorphism-+ : IsMonoidHomomorphism +-0-rawMonoid ℕ.+-0-rawMonoid toℕ
toℕ-isMonoidHomomorphism-+ = record
  { isMagmaHomomorphism = toℕ-isMagmaHomomorphism-+
  ; ε-homo              = refl
  }

toℕ-isMonoidMonomorphism-+ : IsMonoidMonomorphism +-0-rawMonoid ℕ.+-0-rawMonoid toℕ
toℕ-isMonoidMonomorphism-+ = record
  { isMonoidHomomorphism = toℕ-isMonoidHomomorphism-+
  ; injective            = toℕ-injective
  }

suc≗1+ : suc  1ᵇ +_
suc≗1+ zero     = refl
suc≗1+ 2[1+ _ ] = refl
suc≗1+ 1+[2 _ ] = refl

suc-+ :  x y  suc x + y  suc (x + y)
suc-+ zero        y     =  sym (suc≗1+ y)
suc-+ 2[1+ x ] zero     =  refl
suc-+ 1+[2 x ] zero     =  refl
suc-+ 2[1+ x ] 2[1+ y ] =  cong (suc  2[1+_]) (suc-+ x y)
suc-+ 2[1+ x ] 1+[2 y ] =  cong (suc  1+[2_]) (suc-+ x y)
suc-+ 1+[2 x ] 2[1+ y ] =  refl
suc-+ 1+[2 x ] 1+[2 y ] =  refl

1+≗suc : (1ᵇ +_)  suc
1+≗suc = suc-+ zero

fromℕ'-homo-+ :  m n  fromℕ' (m ℕ.+ n)  fromℕ' m + fromℕ' n
fromℕ'-homo-+ 0         _ = refl
fromℕ'-homo-+ (ℕ.suc m) n = begin
  fromℕ' ((ℕ.suc m) ℕ.+ n)         ≡⟨⟩
  suc (fromℕ' (m ℕ.+ n))           ≡⟨ cong suc (fromℕ'-homo-+ m n) 
  suc (a + b)                      ≡⟨ sym (suc-+ a b) 
  (suc a) + b                      ≡⟨⟩
  (fromℕ' (ℕ.suc m)) + (fromℕ' n)  
  where open ≡-Reasoning;  a = fromℕ' m;  b = fromℕ' n

fromℕ-homo-+ :  m n  fromℕ (m ℕ.+ n)  fromℕ m + fromℕ n
fromℕ-homo-+ m n rewrite fromℕ≡fromℕ' (m ℕ.+ n) | fromℕ≡fromℕ' m | fromℕ≡fromℕ' n =
  fromℕ'-homo-+ m n

------------------------------------------------------------------------
-- Algebraic properties of _+_

-- Mostly proved by using the isomorphism between `ℕ` and `ℕᵇ` provided
-- by `toℕ`/`fromℕ`.

private
  module +-Monomorphism = MonoidMonomorphism toℕ-isMonoidMonomorphism-+

+-assoc : Associative _+_
+-assoc = +-Monomorphism.assoc ℕ.+-isMagma ℕ.+-assoc

+-comm : Commutative _+_
+-comm = +-Monomorphism.comm ℕ.+-isMagma ℕ.+-comm

+-identityˡ : LeftIdentity zero _+_
+-identityˡ _ = refl

+-identityʳ : RightIdentity zero _+_
+-identityʳ = +-Monomorphism.identityʳ ℕ.+-isMagma ℕ.+-identityʳ

+-identity : Identity zero _+_
+-identity = +-identityˡ , +-identityʳ

+-cancelˡ-≡ : LeftCancellative _+_
+-cancelˡ-≡ = +-Monomorphism.cancelˡ ℕ.+-isMagma ℕ.+-cancelˡ-≡

+-cancelʳ-≡ : RightCancellative _+_
+-cancelʳ-≡ = +-Monomorphism.cancelʳ ℕ.+-isMagma ℕ.+-cancelʳ-≡

------------------------------------------------------------------------
-- Structures for _+_

+-isMagma : IsMagma _+_
+-isMagma = isMagma _+_

+-isSemigroup : IsSemigroup _+_
+-isSemigroup = +-Monomorphism.isSemigroup ℕ.+-isSemigroup

+-isCommutativeSemigroup : IsCommutativeSemigroup _+_
+-isCommutativeSemigroup = record
  { isSemigroup = +-isSemigroup
  ; comm        = +-comm
  }

+-0-isMonoid : IsMonoid _+_ 0ᵇ
+-0-isMonoid = +-Monomorphism.isMonoid ℕ.+-0-isMonoid

+-0-isCommutativeMonoid : IsCommutativeMonoid _+_ 0ᵇ
+-0-isCommutativeMonoid = +-Monomorphism.isCommutativeMonoid ℕ.+-0-isCommutativeMonoid

------------------------------------------------------------------------
-- Bundles for _+_

+-magma : Magma 0ℓ 0ℓ
+-magma = magma _+_

+-semigroup : Semigroup 0ℓ 0ℓ
+-semigroup = record
  { isSemigroup = +-isSemigroup
  }

+-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ
+-commutativeSemigroup = record
  { isCommutativeSemigroup = +-isCommutativeSemigroup
  }

+-0-monoid : Monoid 0ℓ 0ℓ
+-0-monoid = record
  { ε        = zero
  ; isMonoid = +-0-isMonoid
  }

+-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
+-0-commutativeMonoid = record
  { isCommutativeMonoid = +-0-isCommutativeMonoid
  }

module Bin+CSemigroup = CommSemigProp +-commutativeSemigroup

------------------------------------------------------------------------
-- Properties of _+_ and _≤_

+-mono-≤ : _+_ Preserves₂ _≤_  _≤_  _≤_
+-mono-≤ {x} {x′} {y} {y′} x≤x′ y≤y′ =  begin
  x + y                 ≡⟨ sym $ cong₂ _+_ (fromℕ-toℕ x) (fromℕ-toℕ y) 
  fromℕ m + fromℕ n     ≡⟨ sym (fromℕ-homo-+ m n) 
  fromℕ (m ℕ.+ n)       ≤⟨ fromℕ-mono-≤ (ℕ.+-mono-≤ m≤m′ n≤n′) 
  fromℕ (m′ ℕ.+ n′)     ≡⟨ fromℕ-homo-+ m′ n′ 
  fromℕ m′ + fromℕ n′   ≡⟨ cong₂ _+_ (fromℕ-toℕ x′) (fromℕ-toℕ y′) 
  x′ + y′               
  where
  open ≤-Reasoning
  m    = toℕ x;             m′   = toℕ x′
  n    = toℕ y;             n′   = toℕ y′
  m≤m′ = toℕ-mono-≤ x≤x′;   n≤n′ = toℕ-mono-≤ y≤y′

+-monoˡ-≤ :  x  (_+ x) Preserves _≤_  _≤_
+-monoˡ-≤ x y≤z =  +-mono-≤ y≤z (≤-refl {x})

+-monoʳ-≤ :  x  (x +_) Preserves _≤_  _≤_
+-monoʳ-≤ x y≤z =  +-mono-≤ (≤-refl {x}) y≤z

+-mono-<-≤ : _+_ Preserves₂ _<_  _≤_  _<_
+-mono-<-≤ {x} {x′} {y} {y′} x<x′ y≤y′ =  begin-strict
  x + y                  ≡⟨ sym $ cong₂ _+_ (fromℕ-toℕ x) (fromℕ-toℕ y) 
  fromℕ m + fromℕ n      ≡⟨ sym (fromℕ-homo-+ m n) 
  fromℕ (m ℕ.+ n)        <⟨ fromℕ-mono-< (ℕ.+-mono-<-≤ m<m′ n≤n′) 
  fromℕ (m′ ℕ.+ n′)      ≡⟨ fromℕ-homo-+ m′ n′ 
  fromℕ m′ + fromℕ n′    ≡⟨ cong₂ _+_ (fromℕ-toℕ x′) (fromℕ-toℕ y′) 
  x′ + y′                
  where
  open ≤-Reasoning
  m    = toℕ x;             n    = toℕ y
  m′   = toℕ x′;            n′   = toℕ y′
  m<m′ = toℕ-mono-< x<x′;   n≤n′ = toℕ-mono-≤ y≤y′

+-mono-≤-< : _+_ Preserves₂ _≤_  _<_  _<_
+-mono-≤-< {x} {x′} {y} {y′} x≤x′ y<y′ =  subst₂ _<_ (+-comm y x) (+-comm y′ x′) y+x<y′+x′
  where
  y+x<y′+x′ =  +-mono-<-≤ y<y′ x≤x′

+-monoˡ-< :  x  (_+ x) Preserves _<_  _<_
+-monoˡ-< x y<z =  +-mono-<-≤ y<z (≤-refl {x})

+-monoʳ-< :  x  (x +_) Preserves _<_  _<_
+-monoʳ-< x y<z =  +-mono-≤-< (≤-refl {x}) y<z

x≤y+x :  x y  x  y + x
x≤y+x x y =  begin
  x        ≡⟨ sym (+-identityˡ x) 
  0ᵇ + x   ≤⟨ +-monoˡ-≤ x (0≤x y) 
  y + x    
  where open ≤-Reasoning

x≤x+y :  x y  x  x + y
x≤x+y x y =  begin
  x        ≤⟨ x≤y+x x y 
  y + x    ≡⟨ +-comm y x 
  x + y    
  where open ≤-Reasoning

x<x+y :  x {y}  y > 0ᵇ  x < x + y
x<x+y x {y} y>0 = begin-strict
  x                             ≡⟨ sym (fromℕ-toℕ x) 
  fromℕ (toℕ x)                 <⟨ fromℕ-mono-< (ℕ.m<m+n (toℕ x) (toℕ-mono-< y>0)) 
  fromℕ (toℕ x ℕ.+ toℕ y)       ≡⟨ fromℕ-homo-+ (toℕ x) (toℕ y) 
  fromℕ (toℕ x) + fromℕ (toℕ y) ≡⟨ cong₂ _+_ (fromℕ-toℕ x) (fromℕ-toℕ y) 
  x + y                         
  where open ≤-Reasoning

x<x+1 :  x  x < x + 1ᵇ
x<x+1 x = x<x+y x 0<odd

x<1+x :  x  x < 1ᵇ + x
x<1+x x rewrite +-comm 1ᵇ x = x<x+1 x

x<1⇒x≡0 : x < 1ᵇ  x  zero
x<1⇒x≡0 0<odd = refl

------------------------------------------------------------------------
-- Other properties

x≢0⇒x+y≢0 :  {x} (y : ℕᵇ)  x  zero  x + y  zero
x≢0⇒x+y≢0 {2[1+ _ ]} zero _   =  λ()
x≢0⇒x+y≢0 {zero}     _    0≢0 =  contradiction refl 0≢0

------------------------------------------------------------------------
-- Properties of _*_

-- toℕ/fromℕ are homomorphisms for _*_

private  2*ₙ2*ₙ =  (2 ℕ.*_)  (2 ℕ.*_)

toℕ-homo-* :  x y  toℕ (x * y)  toℕ x ℕ.* toℕ y
toℕ-homo-* x y =  aux x y (size x ℕ.+ size y) ℕ.≤-refl
  where
  aux : (x y : ℕᵇ)  (cnt : )  (size x ℕ.+ size y ℕ.≤ cnt)   toℕ (x * y)  toℕ x ℕ.* toℕ y
  aux zero     _        _ _ = refl
  aux 2[1+ x ] zero     _ _ = sym (ℕ.*-zeroʳ (toℕ x ℕ.+ (ℕ.suc (toℕ x ℕ.+ 0))))
  aux 1+[2 x ] zero     _ _ = sym (ℕ.*-zeroʳ (toℕ x ℕ.+ (toℕ x ℕ.+ 0)))
  aux 2[1+ x ] 2[1+ y ] (ℕ.suc cnt) (s≤s |x|+1+|y|≤cnt) = begin
    toℕ (2[1+ x ] * 2[1+ y ])                ≡⟨⟩
    toℕ (double 2[1+ (x + (y + xy)) ])       ≡⟨ toℕ-double 2[1+ (x + (y + xy)) ] 
    2 ℕ.* (toℕ 2[1+ (x + (y + xy)) ])        ≡⟨⟩
    2*ₙ2*ₙ (ℕ.suc (toℕ (x + (y + xy))))      ≡⟨ cong (2*ₙ2*ₙ  ℕ.suc) (toℕ-homo-+ x (y + xy)) 
    2*ₙ2*ₙ (ℕ.suc (m ℕ.+ (toℕ (y + xy))))    ≡⟨ cong (2*ₙ2*ₙ  ℕ.suc  (m ℕ.+_)) (toℕ-homo-+ y xy) 
    2*ₙ2*ₙ (ℕ.suc (m ℕ.+ (n ℕ.+ toℕ xy)))    ≡⟨ cong (2*ₙ2*ₙ  ℕ.suc  (m ℕ.+_)  (n ℕ.+_))
                                                  (aux x y cnt |x|+|y|≤cnt) 
    2*ₙ2*ₙ (ℕ.suc (m ℕ.+ (n ℕ.+ (m ℕ.* n)))) ≡⟨ solve 2  m n  con 2 :* (con 2 :* (con 1 :+ (m :+ (n :+ m :* n)))) :=
                                                  (con 2 :* (con 1 :+ m)) :* (con 2 :* (con 1 :+ n)))
                                                  refl m n 
    (2 ℕ.* (1 ℕ.+ m)) ℕ.* (2 ℕ.* (1 ℕ.+ n))  ≡⟨⟩
    toℕ 2[1+ x ] ℕ.* toℕ 2[1+ y ]            
    where
    open ≡-Reasoning;  m = toℕ x;  n = toℕ y;  xy = x * y

    |x|+|y|≤cnt = ℕ.≤-trans (ℕ.+-monoʳ-≤ (size x) (ℕ.n≤1+n (size y))) |x|+1+|y|≤cnt

  aux 2[1+ x ] 1+[2 y ] (ℕ.suc cnt) (s≤s |x|+1+|y|≤cnt) = begin
    toℕ (2[1+ x ] * 1+[2 y ])                  ≡⟨⟩
    toℕ (2[1+ (x + y * 2[1+ x ]) ])            ≡⟨⟩
    2 ℕ.* (ℕ.suc (toℕ (x + y * 2[1+ x ])))     ≡⟨ cong ((2 ℕ.*_)  ℕ.suc) (toℕ-homo-+ x _) 
    2 ℕ.* (ℕ.suc (m ℕ.+ (toℕ (y * 2[1+ x ])))) ≡⟨ cong ((2 ℕ.*_)  ℕ.suc  (m ℕ.+_))
                                                    (aux y 2[1+ x ] cnt |y|+1+|x|≤cnt) 
    2 ℕ.* (1+m ℕ.+ (n ℕ.* (toℕ 2[1+ x ])))     ≡⟨⟩
    2 ℕ.* (1+m ℕ.+ (n ℕ.* 2[1+m]))             ≡⟨ solve 2  m n 
                                                    con 2 :* ((con 1 :+ m) :+ (n :* (con 2 :* (con 1 :+ m)))) :=
                                                    (con 2 :* (con 1 :+ m)) :* (con 1 :+ con 2 :* n))
                                                    refl m n 
    2[1+m] ℕ.* (ℕ.suc (2 ℕ.* n))               ≡⟨⟩
    toℕ 2[1+ x ] ℕ.* toℕ 1+[2 y ]              
    where
    open ≡-Reasoning;   m = toℕ x;  n = toℕ y;  1+m = ℕ.suc m;  2[1+m] = 2 ℕ.* (ℕ.suc m)

    eq : size x ℕ.+ (ℕ.suc (size y))  size y ℕ.+ (ℕ.suc (size x))
    eq = ℕ-+-semigroupProperties.x∙yz≈z∙yx (size x) 1 _

    |y|+1+|x|≤cnt =  subst (ℕ._≤ cnt) eq |x|+1+|y|≤cnt

  aux 1+[2 x ] 2[1+ y ] (ℕ.suc cnt) (s≤s |x|+1+|y|≤cnt) = begin
    toℕ (1+[2 x ] * 2[1+ y ])                  ≡⟨⟩
    toℕ 2[1+ (y + x * 2[1+ y ]) ]              ≡⟨⟩
    2 ℕ.* (ℕ.suc (toℕ (y + x * 2[1+ y ])))     ≡⟨ cong ((2 ℕ.*_)  ℕ.suc)
                                                    (toℕ-homo-+ y (x * 2[1+ y ])) 
    2 ℕ.* (ℕ.suc (n ℕ.+ (toℕ (x * 2[1+ y ])))) ≡⟨ cong ((2 ℕ.*_)  ℕ.suc  (n ℕ.+_))
                                                    (aux x 2[1+ y ] cnt |x|+1+|y|≤cnt) 
    2 ℕ.* (1+n ℕ.+ (m ℕ.* toℕ 2[1+ y ]))       ≡⟨⟩
    2 ℕ.* (1+n ℕ.+ (m ℕ.* 2[1+n]))             ≡⟨ solve 2  m n 
                                                    con 2 :* ((con 1 :+ n) :+ (m :* (con 2 :* (con 1 :+ n)))) :=
                                                    (con 1 :+ (con 2 :* m)) :* (con 2 :* (con 1 :+ n)))
                                                    refl m n 
    (ℕ.suc 2m) ℕ.* 2[1+n]                      ≡⟨⟩
    toℕ 1+[2 x ] ℕ.* toℕ 2[1+ y ]              
    where
    open ≡-Reasoning
    m  = toℕ x;     n      = toℕ y;            1+n = ℕ.suc n
    2m = 2 ℕ.* m;   2[1+n] = 2 ℕ.* (ℕ.suc n)

  aux 1+[2 x ] 1+[2 y ] (ℕ.suc cnt) (s≤s |x|+1+|y|≤cnt) = begin
    toℕ (1+[2 x ] * 1+[2 y ])               ≡⟨⟩
    toℕ 1+[2 (x + y * 1+2x) ]               ≡⟨⟩
    ℕ.suc (2 ℕ.* (toℕ (x + y * 1+2x)))      ≡⟨ cong (ℕ.suc  (2 ℕ.*_)) (toℕ-homo-+ x (y * 1+2x)) 
    ℕ.suc (2 ℕ.* (m ℕ.+ (toℕ (y * 1+2x))))  ≡⟨ cong (ℕ.suc  (2 ℕ.*_)  (m ℕ.+_))
                                                 (aux y 1+2x cnt |y|+1+|x|≤cnt) 
    ℕ.suc (2 ℕ.* (m ℕ.+ (n ℕ.* [1+2x]′)))   ≡⟨ cong ℕ.suc $ ℕ.*-distribˡ-+ 2 m (n ℕ.* [1+2x]′) 
    ℕ.suc (2m ℕ.+ (2 ℕ.* (n ℕ.* [1+2x]′)))  ≡⟨ cong (ℕ.suc  (2m ℕ.+_)) (sym (ℕ.*-assoc 2 n _)) 
    (ℕ.suc 2m) ℕ.+ 2n ℕ.* [1+2x]′           ≡⟨⟩
    [1+2x]′ ℕ.+ 2n ℕ.* [1+2x]′              ≡⟨ cong (ℕ._+ (2n ℕ.* [1+2x]′)) $
                                                    sym (ℕ.*-identityˡ [1+2x]′) 
    1 ℕ.* [1+2x]′ ℕ.+ 2n ℕ.* [1+2x]′        ≡⟨ sym (ℕ.*-distribʳ-+ [1+2x]′ 1 2n) 
    (ℕ.suc 2n) ℕ.* [1+2x]′                  ≡⟨ ℕ.*-comm (ℕ.suc 2n) [1+2x]′ 
    toℕ 1+[2 x ] ℕ.* toℕ 1+[2 y ]           
    where
    open ≡-Reasoning
    m    = toℕ x;      n       = toℕ y;     2m = 2 ℕ.* m;    2n = 2 ℕ.* n
    1+2x = 1+[2 x ];   [1+2x]′ = toℕ 1+2x

    eq : size x ℕ.+ (ℕ.suc (size y))  size y ℕ.+ (ℕ.suc (size x))
    eq = ℕ-+-semigroupProperties.x∙yz≈z∙yx (size x) 1 _

    |y|+1+|x|≤cnt = subst (ℕ._≤ cnt) eq |x|+1+|y|≤cnt


toℕ-isMagmaHomomorphism-* : IsMagmaHomomorphism *-rawMagma ℕ.*-rawMagma toℕ
toℕ-isMagmaHomomorphism-* = record
  { isRelHomomorphism = toℕ-isRelHomomorphism
  ; homo              = toℕ-homo-*
  }

toℕ-isMonoidHomomorphism-* : IsMonoidHomomorphism *-1-rawMonoid ℕ.*-1-rawMonoid toℕ
toℕ-isMonoidHomomorphism-* = record
  { isMagmaHomomorphism = toℕ-isMagmaHomomorphism-*
  ; ε-homo              = refl
  }

toℕ-isMonoidMonomorphism-* : IsMonoidMonomorphism *-1-rawMonoid ℕ.*-1-rawMonoid toℕ
toℕ-isMonoidMonomorphism-* = record
  { isMonoidHomomorphism = toℕ-isMonoidHomomorphism-*
  ; injective            = toℕ-injective
  }

fromℕ-homo-* :  m n  fromℕ (m ℕ.* n)  fromℕ m * fromℕ n
fromℕ-homo-* m n = begin
  fromℕ (m ℕ.* n)           ≡⟨ cong fromℕ (cong₂ ℕ._*_ m≡aN n≡bN) 
  fromℕ (toℕ a ℕ.* toℕ b)   ≡⟨ cong fromℕ (sym (toℕ-homo-* a b)) 
  fromℕ (toℕ (a * b))       ≡⟨ fromℕ-toℕ (a * b) 
  a * b                     
  where
  open ≡-Reasoning
  a    = fromℕ m;             b    = fromℕ n
  m≡aN = sym (toℕ-fromℕ m);   n≡bN = sym (toℕ-fromℕ n)

private
  module *-Monomorphism = MonoidMonomorphism toℕ-isMonoidMonomorphism-*

------------------------------------------------------------------------
-- Algebraic properties of _*_

-- Mostly proved by using the isomorphism between `ℕ` and `ℕᵇ` provided
-- by `toℕ`/`fromℕ`.

*-assoc : Associative _*_
*-assoc = *-Monomorphism.assoc ℕ.*-isMagma ℕ.*-assoc

*-comm : Commutative _*_
*-comm = *-Monomorphism.comm ℕ.*-isMagma ℕ.*-comm

*-identityˡ : LeftIdentity 1ᵇ _*_
*-identityˡ = *-Monomorphism.identityˡ ℕ.*-isMagma ℕ.*-identityˡ

*-identityʳ : RightIdentity 1ᵇ _*_
*-identityʳ x =  trans (*-comm x 1ᵇ) (*-identityˡ x)

*-identity : Identity 1ᵇ _*_
*-identity = (*-identityˡ , *-identityʳ)

*-zeroˡ : LeftZero zero _*_
*-zeroˡ _ = refl

*-zeroʳ : RightZero zero _*_
*-zeroʳ zero     = refl
*-zeroʳ 2[1+ _ ] = refl
*-zeroʳ 1+[2 _ ] = refl

*-zero : Zero zero _*_
*-zero = *-zeroˡ , *-zeroʳ

*-distribˡ-+ : _*_ DistributesOverˡ _+_
*-distribˡ-+ a b c = begin
  a * (b + c)                          ≡⟨ sym (fromℕ-toℕ (a * (b + c))) 
  fromℕ (toℕ (a * (b + c)))            ≡⟨ cong fromℕ (toℕ-homo-* a (b + c)) 
  fromℕ (k ℕ.* (toℕ (b + c)))          ≡⟨ cong (fromℕ  (k ℕ.*_)) (toℕ-homo-+ b c) 
  fromℕ (k ℕ.* (m ℕ.+ n))              ≡⟨ cong fromℕ (ℕ.*-distribˡ-+ k m n) 
  fromℕ (k ℕ.* m ℕ.+ k ℕ.* n)          ≡⟨ cong fromℕ $ sym $
                                            cong₂ ℕ._+_ (toℕ-homo-* a b) (toℕ-homo-* a c) 
  fromℕ (toℕ (a * b) ℕ.+ toℕ (a * c))  ≡⟨ cong fromℕ (sym (toℕ-homo-+ (a * b) (a * c))) 
  fromℕ (toℕ (a * b + a * c))          ≡⟨ fromℕ-toℕ (a * b + a * c) 
  a * b + a * c                        
  where open ≡-Reasoning;  k = toℕ a;  m = toℕ b;  n = toℕ c

*-distribʳ-+ : _*_ DistributesOverʳ _+_
*-distribʳ-+ = comm∧distrˡ⇒distrʳ *-comm *-distribˡ-+

*-distrib-+ : _*_ DistributesOver _+_
*-distrib-+ = *-distribˡ-+ , *-distribʳ-+

------------------------------------------------------------------------
-- Structures

*-isMagma : IsMagma _*_
*-isMagma = isMagma _*_

*-isSemigroup : IsSemigroup _*_
*-isSemigroup = *-Monomorphism.isSemigroup ℕ.*-isSemigroup

*-1-isMonoid : IsMonoid _*_ 1ᵇ
*-1-isMonoid = *-Monomorphism.isMonoid ℕ.*-1-isMonoid

*-1-isCommutativeMonoid : IsCommutativeMonoid _*_ 1ᵇ
*-1-isCommutativeMonoid = *-Monomorphism.isCommutativeMonoid ℕ.*-1-isCommutativeMonoid

+-*-isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _+_ _*_ zero 1ᵇ
+-*-isSemiringWithoutAnnihilatingZero = record
  { +-isCommutativeMonoid = +-0-isCommutativeMonoid
  ; *-cong                = cong₂ _*_
  ; *-assoc               = *-assoc
  ; *-identity            = *-identity
  ; distrib               = *-distrib-+
  }

+-*-isSemiring : IsSemiring _+_ _*_ zero 1ᵇ
+-*-isSemiring = record
  { isSemiringWithoutAnnihilatingZero = +-*-isSemiringWithoutAnnihilatingZero
  ; zero                              = *-zero
  }

+-*-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ zero 1ᵇ
+-*-isCommutativeSemiring = record
  { isSemiring = +-*-isSemiring
  ; *-comm     = *-comm
  }

------------------------------------------------------------------------
-- Bundles

*-magma : Magma 0ℓ 0ℓ
*-magma = record
  { isMagma = *-isMagma
  }

*-semigroup : Semigroup 0ℓ 0ℓ
*-semigroup = record
  { isSemigroup = *-isSemigroup
  }

*-1-monoid : Monoid 0ℓ 0ℓ
*-1-monoid = record
  { isMonoid = *-1-isMonoid
  }

*-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
*-1-commutativeMonoid = record
  { isCommutativeMonoid = *-1-isCommutativeMonoid
  }

+-*-semiring : Semiring 0ℓ 0ℓ
+-*-semiring = record
  { isSemiring = +-*-isSemiring
  }

+-*-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
+-*-commutativeSemiring = record
  { isCommutativeSemiring = +-*-isCommutativeSemiring
  }

------------------------------------------------------------------------
-- Properties of _*_ and _≤_ & _<_

*-mono-≤ : _*_ Preserves₂ _≤_  _≤_  _≤_
*-mono-≤ {x} {u} {y} {v} x≤u y≤v = toℕ-cancel-≤ (begin
  toℕ (x * y)      ≡⟨ toℕ-homo-* x y 
  toℕ x ℕ.* toℕ y  ≤⟨ ℕ.*-mono-≤ (toℕ-mono-≤ x≤u) (toℕ-mono-≤ y≤v) 
  toℕ u ℕ.* toℕ v  ≡⟨ sym (toℕ-homo-* u v) 
  toℕ (u * v)      )
  where open ℕ.≤-Reasoning

*-monoʳ-≤ :  x  (x *_) Preserves _≤_  _≤_
*-monoʳ-≤ x y≤y′ = *-mono-≤ (≤-refl {x}) y≤y′

*-monoˡ-≤ :  x  (_* x) Preserves _≤_  _≤_
*-monoˡ-≤ x y≤y′ = *-mono-≤ y≤y′ (≤-refl {x})

*-mono-< : _*_ Preserves₂ _<_  _<_  _<_
*-mono-< {x} {u} {y} {v} x<u y<v = toℕ-cancel-< (begin-strict
  toℕ (x * y)      ≡⟨ toℕ-homo-* x y 
  toℕ x ℕ.* toℕ y  <⟨ ℕ.*-mono-< (toℕ-mono-< x<u) (toℕ-mono-< y<v) 
  toℕ u ℕ.* toℕ v  ≡⟨ sym (toℕ-homo-* u v) 
  toℕ (u * v)      )
  where open ℕ.≤-Reasoning

*-monoʳ-< :  x  ((1ᵇ + x) *_) Preserves _<_  _<_
*-monoʳ-< x {y} {z} y<z = begin-strict
  (1ᵇ + x) * y    ≡⟨ *-distribʳ-+ y 1ᵇ x 
  1ᵇ * y + x * y  ≡⟨ cong (_+ x * y) (*-identityˡ y) 
  y      + x * y  <⟨ +-mono-<-≤ y<z (*-monoʳ-≤ x (<⇒≤ y<z)) 
  z      + x * z  ≡⟨ cong (_+ x * z) (sym (*-identityˡ z)) 
  1ᵇ * z + x * z  ≡⟨ sym (*-distribʳ-+ z 1ᵇ x) 
  (1ᵇ + x) * z    
  where open ≤-Reasoning

*-monoˡ-< :  x  (_* (1ᵇ + x)) Preserves _<_  _<_
*-monoˡ-< x {y} {z} y<z = begin-strict
  y * (1ᵇ + x)   ≡⟨ *-comm y (1ᵇ + x) 
  (1ᵇ + x) * y   <⟨ *-monoʳ-< x y<z 
  (1ᵇ + x) * z   ≡⟨ *-comm (1ᵇ + x) z 
  z * (1ᵇ + x)   
  where open ≤-Reasoning

------------------------------------------------------------------------
-- Other properties of _*_

x*y≡0⇒x≡0∨y≡0 :  x {y}  x * y  zero  x  zero  y  zero
x*y≡0⇒x≡0∨y≡0 zero {_}    _ =  inj₁ refl
x*y≡0⇒x≡0∨y≡0 _    {zero} _ =  inj₂ refl

x≢0∧y≢0⇒x*y≢0 :  {x y}  x  zero  y  zero  x * y  zero
x≢0∧y≢0⇒x*y≢0 {x} {_} x≢0 y≢0 xy≡0  with x*y≡0⇒x≡0∨y≡0 x xy≡0
... | inj₁ x≡0 =  x≢0 x≡0
... | inj₂ y≡0 =  y≢0 y≡0

2*x≡x+x :  x  2ᵇ * x  x + x
2*x≡x+x x = begin
  2ᵇ * x            ≡⟨⟩
  (1ᵇ + 1ᵇ) * x     ≡⟨ *-distribʳ-+ x 1ᵇ 1ᵇ 
  1ᵇ * x + 1ᵇ * x   ≡⟨ cong₂ _+_ (*-identityˡ x) (*-identityˡ x) 
  x + x             
  where open ≡-Reasoning

1+-* :  x y  (1ᵇ + x) * y  y + x * y
1+-* x y = begin
  (1ᵇ + x) * y     ≡⟨ *-distribʳ-+ y 1ᵇ x 
  1ᵇ * y + x * y   ≡⟨ cong (_+ x * y) (*-identityˡ y) 
  y + x * y        
  where open ≡-Reasoning

*-1+ :  x y  y * (1ᵇ + x)  y + y * x
*-1+ x y = begin
  y * (1ᵇ + x)     ≡⟨ *-distribˡ-+ y 1ᵇ x 
  y * 1ᵇ + y * x   ≡⟨ cong (_+ y * x) (*-identityʳ y) 
  y + y * x        
  where open ≡-Reasoning

------------------------------------------------------------------------
-- Properties of double
------------------------------------------------------------------------

double[x]≡0⇒x≡0 : double x  zero  x  zero
double[x]≡0⇒x≡0 {zero} _ = refl

x≡0⇒double[x]≡0 : x  0ᵇ  double x  0ᵇ
x≡0⇒double[x]≡0 = cong double

x≢0⇒double[x]≢0 : x  zero  double x  zero
x≢0⇒double[x]≢0 x≢0 = x≢0  double[x]≡0⇒x≡0

double≢1 : double x  1ᵇ
double≢1 {zero} ()

double≗2* : double  2ᵇ *_
double≗2* x =  toℕ-injective $ begin
  toℕ (double x)  ≡⟨ toℕ-double x 
  2 ℕ.* (toℕ x)   ≡⟨ sym (toℕ-homo-* 2ᵇ x) 
  toℕ (2ᵇ * x)    
  where open ≡-Reasoning

double-*-assoc :  x y  (double x) * y  double (x * y)
double-*-assoc x y = begin
  (double x) * y     ≡⟨ cong (_* y) (double≗2* x) 
  (2ᵇ * x) * y       ≡⟨ *-assoc 2ᵇ x y 
  2ᵇ * (x * y)       ≡⟨ sym (double≗2* (x * y)) 
  double (x * y)     
  where open ≡-Reasoning

double[x]≡x+x :  x  double x  x + x
double[x]≡x+x x =  trans (double≗2* x) (2*x≡x+x x)

double-distrib-+ :  x y  double (x + y)  double x + double y
double-distrib-+ x y = begin
  double (x + y)         ≡⟨ double≗2* (x + y) 
  2ᵇ * (x + y)           ≡⟨ *-distribˡ-+ 2ᵇ x y 
  (2ᵇ * x) + (2ᵇ * y)    ≡⟨ sym (cong₂ _+_ (double≗2* x) (double≗2* y)) 
  double x + double y    
  where open ≡-Reasoning

double-mono-≤ : double Preserves _≤_  _≤_
double-mono-≤ {x} {y} x≤y =  begin
  double x   ≡⟨ double≗2* x 
  2ᵇ * x     ≤⟨ *-monoʳ-≤ 2ᵇ x≤y 
  2ᵇ * y     ≡⟨ sym (double≗2* y) 
  double y   
  where open ≤-Reasoning

double-mono-< : double Preserves _<_  _<_
double-mono-< {x} {y} x<y =  begin-strict
  double x   ≡⟨ double≗2* x 
  2ᵇ * x     <⟨ *-monoʳ-< 1ᵇ x<y 
  2ᵇ * y     ≡⟨ sym (double≗2* y) 
  double y   
  where open ≤-Reasoning

double-cancel-≤ :  {x y}  double x  double y  x  y
double-cancel-≤ {x} {y} 2x≤2y  with <-cmp x y
... | tri< x<y _   _   =  <⇒≤ x<y
... | tri≈ _   x≡y _   =  ≤-reflexive x≡y
... | tri> _   _   x>y =  contradiction 2x≤2y (<⇒≱ (double-mono-< x>y))

double-cancel-< :  {x y}  double x < double y  x < y
double-cancel-< {x} {y} 2x<2y  with <-cmp x y
... | tri< x<y _    _   =  x<y
... | tri≈ _   refl _   =  contradiction 2x<2y (<-irrefl refl)
... | tri> _   _    x>y =  contradiction (double-mono-< x>y) (<⇒≯ 2x<2y)

x<double[x] :  x  x  zero  x < double x
x<double[x] x x≢0 = begin-strict
  x                 <⟨ x<x+y x (x≢0⇒x>0 x≢0) 
  x + x             ≡⟨ sym (double[x]≡x+x x) 
  double x          
  where open ≤-Reasoning

x≤double[x] :  x  x  double x
x≤double[x] x =  begin
  x         ≤⟨ x≤x+y x x 
  x + x     ≡⟨ sym (double[x]≡x+x x) 
  double x  
  where open ≤-Reasoning

double-suc :  x  double (suc x)  2ᵇ + double x
double-suc x = begin
  double (suc x)   ≡⟨ cong double (suc≗1+ x) 
  double (1ᵇ + x)  ≡⟨ double-distrib-+ 1ᵇ x 
  2ᵇ + double x    
  where open ≡-Reasoning



------------------------------------------------------------------------
-- Properties of suc
------------------------------------------------------------------------

suc≢0 : suc x  zero
suc≢0 {zero}     ()
suc≢0 {2[1+ _ ]} ()
suc≢0 {1+[2 _ ]} ()

suc-injective : Injective _≡_ _≡_ suc
suc-injective {zero} {zero} p = refl
suc-injective {zero} {2[1+ y ]} p = contradiction 1+[2 p ]-injective (suc≢0  sym)
suc-injective {2[1+ x ]} {zero} p = contradiction 1+[2 p ]-injective suc≢0
suc-injective {2[1+ x ]} {2[1+ y ]} p = cong 2[1+_] (suc-injective 1+[2 p ]-injective)
suc-injective {1+[2 x ]} {1+[2 y ]} refl = refl

2[1+_]-double-suc : 2[1+_]  double  suc
2[1+_]-double-suc zero     = refl
2[1+_]-double-suc 2[1+ x ] = cong 2[1+_] (2[1+_]-double-suc x)
2[1+_]-double-suc 1+[2 x ] = refl

1+[2_]-suc-double : 1+[2_]  suc  double
1+[2_]-suc-double zero     = refl
1+[2_]-suc-double 2[1+ x ] = refl
1+[2_]-suc-double 1+[2 x ] = begin
  1+[2 1+[2 x ] ]         ≡⟨ cong 1+[2_] (1+[2_]-suc-double x) 
  1+[2 (suc 2x) ]         ≡⟨⟩
  suc 2[1+ 2x ]           ≡⟨ cong suc (2[1+_]-double-suc 2x) 
  suc (double (suc 2x))   ≡⟨ cong (suc  double) (sym (1+[2_]-suc-double x)) 
  suc (double 1+[2 x ])   
  where open ≡-Reasoning;  2x = double x

x+suc[y]≡suc[x]+y :  x y  x + suc y  suc x + y
x+suc[y]≡suc[x]+y x y = begin
  x + suc y     ≡⟨ +-comm x _ 
  suc y + x     ≡⟨ suc-+ y x 
  suc (y + x)   ≡⟨ cong suc (+-comm y x) 
  suc (x + y)   ≡⟨ sym (suc-+ x y) 
  suc x + y     
  where open ≡-Reasoning

0<suc :  x  zero < suc x
0<suc x =  x≢0⇒x>0 (suc≢0 {x})

x<suc[x] :  x  x < suc x
x<suc[x] x = begin-strict
  x        <⟨ x<1+x x 
  1ᵇ + x   ≡⟨ sym (suc≗1+ x) 
  suc x    
  where open ≤-Reasoning

x≤suc[x] :  x  x  suc x
x≤suc[x] x = <⇒≤ (x<suc[x] x)

x≢suc[x] :  x  x  suc x
x≢suc[x] x = <⇒≢ (x<suc[x] x)

suc-mono-≤ : suc Preserves _≤_  _≤_
suc-mono-≤ {x} {y} x≤y =  begin
  suc x     ≡⟨ suc≗1+ x 
  1ᵇ + x    ≤⟨ +-monoʳ-≤ 1ᵇ x≤y 
  1ᵇ + y    ≡⟨ sym (suc≗1+ y) 
  suc y     
  where open ≤-Reasoning

suc[x]≤y⇒x<y :  {x y}  suc x  y  x < y
suc[x]≤y⇒x<y {x} (inj₁ sx<y) = <-trans (x<suc[x] x) sx<y
suc[x]≤y⇒x<y {x} (inj₂ refl) = x<suc[x] x

x<y⇒suc[x]≤y :  {x y}  x < y  suc x  y
x<y⇒suc[x]≤y {x} {y} x<y = begin
  suc x                  ≡⟨ sym (fromℕ-toℕ (suc x)) 
  fromℕ (toℕ (suc x))    ≡⟨ cong fromℕ (toℕ-suc x) 
  fromℕ (ℕ.suc (toℕ x))  ≤⟨ fromℕ-mono-≤ (toℕ-mono-< x<y) 
  fromℕ (toℕ y)          ≡⟨ fromℕ-toℕ y 
  y                      
  where open ≤-Reasoning

suc-* :  x y  suc x * y  y + x * y
suc-* x y = begin
  suc x * y     ≡⟨ cong (_* y) (suc≗1+ x) 
  (1ᵇ + x) * y  ≡⟨ 1+-* x y 
  y + x * y     
  where open ≡-Reasoning

*-suc :  x y  x * suc y  x + x * y
*-suc x y = begin
  x * suc y     ≡⟨ cong (x *_) (suc≗1+ y) 
  x * (1ᵇ + y)  ≡⟨ *-1+ y x 
  x + x * y     
  where open ≡-Reasoning

x≤suc[y]*x :  x y  x  (suc y) * x
x≤suc[y]*x x y = begin
  x             ≤⟨ x≤x+y x (y * x) 
  x + y * x     ≡⟨ sym (suc-* y x) 
  (suc y) * x   
  where open ≤-Reasoning

suc[x]≤double[x] :  x  x  zero  suc x  double x
suc[x]≤double[x] x =  x<y⇒suc[x]≤y {x} {double x}  x<double[x] x

suc[x]<2[1+x] :  x  suc x < 2[1+ x ]
suc[x]<2[1+x] x =  begin-strict
  suc x           <⟨ x<double[x] (suc x) suc≢0  
  double (suc x)  ≡⟨ sym (2[1+_]-double-suc x) 
  2[1+ x ]        
  where open ≤-Reasoning

double[x]<1+[2x] :  x  double x < 1+[2 x ]
double[x]<1+[2x] x = begin-strict
  double x         <⟨ x<suc[x] (double x) 
  suc (double x)   ≡⟨ sym (1+[2_]-suc-double x) 
  1+[2 x ]         
  where open ≤-Reasoning

------------------------------------------------------------------------
-- Properties of pred
------------------------------------------------------------------------

pred-suc : pred  suc  id
pred-suc zero     =  refl
pred-suc 2[1+ x ] =  sym (2[1+_]-double-suc x)
pred-suc 1+[2 x ] =  refl

suc-pred : x  zero  suc (pred x)  x
suc-pred {zero}     0≢0 =  contradiction refl 0≢0
suc-pred {2[1+ _ ]} _   =  refl
suc-pred {1+[2 x ]} _   =  sym (1+[2_]-suc-double x)

pred-mono-≤ : pred Preserves _≤_  _≤_
pred-mono-≤ {x} {y} x≤y = begin
  pred x             ≡⟨ cong pred (sym (fromℕ-toℕ x)) 
  pred (fromℕ m)     ≡⟨ sym (fromℕ-pred m) 
  fromℕ (ℕ.pred m)   ≤⟨ fromℕ-mono-≤ (ℕ.pred-mono-≤ (toℕ-mono-≤ x≤y)) 
  fromℕ (ℕ.pred n)   ≡⟨ fromℕ-pred n 
  pred (fromℕ n)     ≡⟨ cong pred (fromℕ-toℕ y) 
  pred y             
  where
  open ≤-Reasoning;  m = toℕ x;  n = toℕ y

pred[x]<x : x  zero  pred x < x
pred[x]<x {x} x≢0 = begin-strict
  pred x       <⟨ x<suc[x] (pred x) 
  suc (pred x) ≡⟨ suc-pred x≢0 
  x            
  where open ≤-Reasoning

pred[x]+y≡x+pred[y] :  {x y}  x  0ᵇ  y  0ᵇ  (pred x) + y  x + pred y
pred[x]+y≡x+pred[y] {x} {y} x≢0 y≢0 = begin
  px + y           ≡⟨ cong (px +_) (sym (suc-pred y≢0)) 
  px + suc py      ≡⟨ cong (px +_) (suc≗1+ py) 
  px + (1ᵇ + py)   ≡⟨ Bin+CSemigroup.x∙yz≈yx∙z px 1ᵇ py 
  (1ᵇ + px) + py   ≡⟨ cong (_+ py) (sym (suc≗1+ px)) 
  (suc px) + py    ≡⟨ cong (_+ py) (suc-pred x≢0) 
  x + py           
  where open ≡-Reasoning;  px = pred x;  py = pred y


------------------------------------------------------------------------
-- Properties of size
------------------------------------------------------------------------

|x|≡0⇒x≡0 : size x  0  x  0ᵇ
|x|≡0⇒x≡0 {zero} refl =  refl



------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 1.4

*-+-isSemiringWithoutAnnihilatingZero = +-*-isSemiringWithoutAnnihilatingZero
{-# WARNING_ON_USAGE *-+-isSemiringWithoutAnnihilatingZero
"Warning: *-+-isSemiringWithoutAnnihilatingZero was deprecated in v1.4.
Please use +-*-isSemiringWithoutAnnihilatingZero instead."
#-}
*-+-isSemiring = +-*-isSemiring
{-# WARNING_ON_USAGE *-+-isSemiring
"Warning: *-+-isSemiring was deprecated in v1.4.
Please use +-*-isSemiring instead."
#-}
*-+-isCommutativeSemiring = +-*-isCommutativeSemiring
{-# WARNING_ON_USAGE *-+-isCommutativeSemiring
"Warning: *-+-isCommutativeSemiring was deprecated in v1.4.
Please use +-*-isCommutativeSemiring instead."
#-}
*-+-semiring = +-*-semiring
{-# WARNING_ON_USAGE *-+-semiring
"Warning: *-+-semiring was deprecated in v1.4.
Please use +-*-semiring instead."
#-}
*-+-commutativeSemiring = +-*-commutativeSemiring
{-# WARNING_ON_USAGE *-+-commutativeSemiring
"Warning: *-+-commutativeSemiring was deprecated in v1.4.
Please use +-*-commutativeSemiring instead."
#-}

-- Version 2.0

{- issue1858/issue1755: raw bundles have moved to `Data.X.Base` -}
open Data.Nat.Binary.Base public
  using (+-rawMagma; +-0-rawMonoid; *-rawMagma; *-1-rawMonoid)