Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Function.Consequences.Propositional
{a b} {A : Set a} {B : Set b}
where
open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; cong)
open import Relation.Binary.PropositionalEquality.Properties
using (setoid)
open import Function.Definitions
open import Relation.Nullary.Negation.Core using (contraposition)
import Function.Consequences.Setoid (setoid A) (setoid B) as Setoid
open Setoid public
hiding
( strictlySurjective⇒surjective
; strictlyInverseˡ⇒inverseˡ
; strictlyInverseʳ⇒inverseʳ
)
private
variable
f : A → B
f⁻¹ : B → A
strictlySurjective⇒surjective : StrictlySurjective _≡_ f →
Surjective _≡_ _≡_ f
strictlySurjective⇒surjective =
Setoid.strictlySurjective⇒surjective (cong _)
strictlyInverseˡ⇒inverseˡ : ∀ f → StrictlyInverseˡ _≡_ f f⁻¹ →
Inverseˡ _≡_ _≡_ f f⁻¹
strictlyInverseˡ⇒inverseˡ f =
Setoid.strictlyInverseˡ⇒inverseˡ (cong _)
strictlyInverseʳ⇒inverseʳ : ∀ f → StrictlyInverseʳ _≡_ f f⁻¹ →
Inverseʳ _≡_ _≡_ f f⁻¹
strictlyInverseʳ⇒inverseʳ f =
Setoid.strictlyInverseʳ⇒inverseʳ (cong _)