{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor hiding (id) module Categories.Diagram.Colimit.Properties {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where private module F = Functor F module C = Category C open C open import Categories.Diagram.Limit F.op open import Categories.Diagram.Colimit F open import Categories.Category.Construction.Cocones F open import Categories.Diagram.Duality C module _ (X : Obj) (coapex₁ : Coapex X) (coapex₂ : Coapex X) (L : Colimit) where private module coapex₁ = Coapex coapex₁ module coapex₂ = Coapex coapex₂ module L = Colimit L K₁ : Cocone K₁ = record { coapex = coapex₁ } module K₁ = Cocone K₁ K₂ : Cocone K₂ = record { coapex = coapex₂ } module K₂ = Cocone K₂ coψ-≈⇒rep-≈ : (∀ A → coapex₁.ψ A ≈ coapex₂.ψ A) → L.rep K₁ ≈ L.rep K₂ coψ-≈⇒rep-≈ = ψ-≈⇒rep-≈ X (Coapex⇒coApex X coapex₁) (Coapex⇒coApex X coapex₂) (Colimit⇒coLimit L)