{-# OPTIONS --safe --lossy-unification #-}
module Cubical.ZCohomology.CohomologyRings.S0 where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Bool
open import Cubical.Data.Unit
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.DirectProd
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR)
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-Quotient
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-notationZ
open import Cubical.HITs.Sn
open import Cubical.ZCohomology.RingStructure.CohomologyRing
open import Cubical.ZCohomology.CohomologyRings.Coproduct
open import Cubical.ZCohomology.CohomologyRings.Unit
open RingEquivs
Cohomology-Ring-S⁰P : RingEquiv (H*R (S₊ 0)) (DirectProd-Ring (CommRing→Ring ℤ[X]/X) (CommRing→Ring ℤ[X]/X))
Cohomology-Ring-S⁰P = compRingEquiv (CohomologyRing-Equiv (invIso Iso-⊤⊎⊤-Bool))
(compRingEquiv (CohomologyRing-Coproduct Unit Unit)
(Coproduct-Equiv.Coproduct-Equiv-12 CohomologyRing-UnitP CohomologyRing-UnitP))
Cohomology-Ring-S⁰ℤ : RingEquiv (H*R (S₊ 0)) (DirectProd-Ring (CommRing→Ring ℤCR) (CommRing→Ring ℤCR))
Cohomology-Ring-S⁰ℤ = compRingEquiv (CohomologyRing-Equiv (invIso Iso-⊤⊎⊤-Bool))
(compRingEquiv (CohomologyRing-Coproduct Unit Unit)
(Coproduct-Equiv.Coproduct-Equiv-12 CohomologyRing-Unitℤ CohomologyRing-Unitℤ))