{-# OPTIONS --safe #-}
module Cubical.Data.Rationals.MoreRationals.QuoQ.Properties where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.GroupoidLaws hiding (_⁻¹)
open import Cubical.Foundations.Univalence

open import Cubical.Data.Int.MoreInts.QuoInt as  using (; Sign; signed; pos; neg; posneg; sign)
open import Cubical.HITs.SetQuotients as SetQuotient using () renaming (_/_ to _//_)

open import Cubical.Data.Nat as  using (; zero; suc)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma

open import Cubical.Data.Sum
open import Cubical.Relation.Nullary

open import Cubical.Data.Rationals.MoreRationals.QuoQ.Base

ℚ-cancelˡ :  {a b} (c : ℕ₊₁)  [ ℕ₊₁→ℤ c ℤ.· a / c ·₊₁ b ]  [ a / b ]
ℚ-cancelˡ {a} {b} c = eq/ _ _
  (cong (ℤ._· ℕ₊₁→ℤ b) (ℤ.·-comm (ℕ₊₁→ℤ c) a)  sym (ℤ.·-assoc a (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b)))

ℚ-cancelʳ :  {a b} (c : ℕ₊₁)  [ a ℤ.· ℕ₊₁→ℤ c / b ·₊₁ c ]  [ a / b ]
ℚ-cancelʳ {a} {b} c = eq/ _ _
  (sym (ℤ.·-assoc a (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b))  cong (a ℤ.·_) (ℤ.·-comm (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b)))

-- useful functions for defining operations on ℚ

onCommonDenom :
  (g :  × ℕ₊₁   × ℕ₊₁  )
  (g-eql :  ((a , b) (c , d) (e , f) :  × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d  c ℤ.· ℕ₊₁→ℤ b)
            ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f))  ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)))
  (g-eqr :  ((a , b) (c , d) (e , f) :  × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f  e ℤ.· ℕ₊₁→ℤ d)
            (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f  (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d)
       
onCommonDenom g g-eql g-eqr = SetQuotient.rec2 isSetℚ
   { (a , b) (c , d)  [ g (a , b) (c , d) / b ·₊₁ d ] })
   { (a , b) (c , d) (e , f) p  eql (a , b) (c , d) (e , f) p })
   { (a , b) (c , d) (e , f) p  eqr (a , b) (c , d) (e , f) p })
  where eql :  ((a , b) (c , d) (e , f) :  × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d  c ℤ.· ℕ₊₁→ℤ b)
               [ g (a , b) (e , f) / b ·₊₁ f ]  [ g (c , d) (e , f) / d ·₊₁ f ]
        eql (a , b) (c , d) (e , f) p =
          [ g (a , b) (e , f) / b ·₊₁ f ]
            ≡⟨ sym (ℚ-cancelˡ d) 
          [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / d ·₊₁ (b ·₊₁ f) ]
            ≡[ i ]⟨ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / ·₊₁-assoc d b f i ] 
          [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / (d ·₊₁ b) ·₊₁ f ]
            ≡[ i ]⟨ [ g-eql (a , b) (c , d) (e , f) p i / ·₊₁-comm d b i ·₊₁ f ] 
          [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / (b ·₊₁ d) ·₊₁ f ]
            ≡[ i ]⟨ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / ·₊₁-assoc b d f (~ i) ] 
          [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / b ·₊₁ (d ·₊₁ f) ]
            ≡⟨ ℚ-cancelˡ b 
          [ g (c , d) (e , f) / d ·₊₁ f ] 
        eqr :  ((a , b) (c , d) (e , f) :  × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f  e ℤ.· ℕ₊₁→ℤ d)
              [ g (a , b) (c , d) / b ·₊₁ d ]  [ g (a , b) (e , f) / b ·₊₁ f ]
        eqr (a , b) (c , d) (e , f) p =
          [ g (a , b) (c , d) / b ·₊₁ d ]
            ≡⟨ sym (ℚ-cancelʳ f) 
          [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / (b ·₊₁ d) ·₊₁ f ]
            ≡[ i ]⟨ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / ·₊₁-assoc b d f (~ i) ] 
          [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / b ·₊₁ (d ·₊₁ f) ]
            ≡[ i ]⟨ [ g-eqr (a , b) (c , d) (e , f) p i / b ·₊₁ ·₊₁-comm d f i ] 
          [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / b ·₊₁ (f ·₊₁ d) ]
            ≡[ i ]⟨ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / ·₊₁-assoc b f d i ] 
          [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / (b ·₊₁ f) ·₊₁ d ]
            ≡⟨ ℚ-cancelʳ d 
          [ g (a , b) (e , f) / b ·₊₁ f ] 

onCommonDenomSym :
  (g :  × ℕ₊₁   × ℕ₊₁  )
  (g-sym :  x y  g x y  g y x)
  (g-eql :  ((a , b) (c , d) (e , f) :  × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d  c ℤ.· ℕ₊₁→ℤ b)
            ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f))  ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)))
       
onCommonDenomSym g g-sym g-eql = onCommonDenom g g-eql q-eqr
  where q-eqr :  ((a , b) (c , d) (e , f) :  × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f  e ℤ.· ℕ₊₁→ℤ d)
                 (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f  (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d
        q-eqr (a , b) (c , d) (e , f) p =
          (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡[ i ]⟨ ℤ.·-comm (g-sym (a , b) (c , d) i) (ℕ₊₁→ℤ f) i 
          ℕ₊₁→ℤ f ℤ.· (g (c , d) (a , b)) ≡⟨ g-eql (c , d) (e , f) (a , b) p 
          ℕ₊₁→ℤ d ℤ.· (g (e , f) (a , b)) ≡[ i ]⟨ ℤ.·-comm (ℕ₊₁→ℤ d) (g-sym (e , f) (a , b) i) i 
          (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d 

onCommonDenomSym-comm :  {g} g-sym {g-eql} (x y : )
                         onCommonDenomSym g g-sym g-eql x y 
                          onCommonDenomSym g g-sym g-eql y x
onCommonDenomSym-comm g-sym = SetQuotient.elimProp2  _ _  isSetℚ _ _)
   { (a , b) (c , d) i  [ g-sym (a , b) (c , d) i / ·₊₁-comm b d i ] })


-- basic arithmetic operations on ℚ

infixl 6 _+_
infixl 7 _·_

private
  lem₁ :  a b c d e (p : a ℤ.· b  c ℤ.· d)  b ℤ.· (a ℤ.· e)  d ℤ.· (c ℤ.· e)
  lem₁ a b c d e p =   ℤ.·-assoc b a e
                      cong (ℤ._· e) (ℤ.·-comm b a  p  ℤ.·-comm c d)
                      sym (ℤ.·-assoc d c e)

  lem₂ :  a b c  a ℤ.· (b ℤ.· c)  c ℤ.· (b ℤ.· a)
  lem₂ a b c =   cong (a ℤ.·_) (ℤ.·-comm b c)  ℤ.·-assoc a c b
                cong (ℤ._· b) (ℤ.·-comm a c)  sym (ℤ.·-assoc c a b)
                cong (c ℤ.·_) (ℤ.·-comm a b)

_+_ :     
_+_ = onCommonDenomSym
   { (a , b) (c , d)  a ℤ.· (ℕ₊₁→ℤ d) ℤ.+ c ℤ.· (ℕ₊₁→ℤ b) })
   { (a , b) (c , d)  ℤ.+-comm (a ℤ.· (ℕ₊₁→ℤ d)) (c ℤ.· (ℕ₊₁→ℤ b)) })
   { (a , b) (c , d) (e , f) p 
    ℕ₊₁→ℤ d ℤ.· (a ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ b)
      ≡⟨ sym (ℤ.·-distribˡ (ℕ₊₁→ℤ d) (a ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ b)) 
    ℕ₊₁→ℤ d ℤ.· (a ℤ.· ℕ₊₁→ℤ f) ℤ.+ ℕ₊₁→ℤ d ℤ.· (e ℤ.· ℕ₊₁→ℤ b)
      ≡[ i ]⟨ lem₁ a (ℕ₊₁→ℤ d) c (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ f) p i ℤ.+ lem₂ (ℕ₊₁→ℤ d) e (ℕ₊₁→ℤ b) i 
    ℕ₊₁→ℤ b ℤ.· (c ℤ.· ℕ₊₁→ℤ f) ℤ.+ ℕ₊₁→ℤ b ℤ.· (e ℤ.· ℕ₊₁→ℤ d)
      ≡⟨ ℤ.·-distribˡ (ℕ₊₁→ℤ b) (c ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ d) 
    ℕ₊₁→ℤ b ℤ.· (c ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ d)  })

+-comm :  x y  x + y  y + x
+-comm = onCommonDenomSym-comm
   { (a , b) (c , d)  ℤ.+-comm (a ℤ.· (ℕ₊₁→ℤ d)) (c ℤ.· (ℕ₊₁→ℤ b)) })

+-identityˡ :  x  0 + x  x
+-identityˡ = SetQuotient.elimProp  _  isSetℚ _ _)
   { (a , b) i  [ ℤ.·-identityʳ a i / ·₊₁-identityˡ b i ] })

+-identityʳ :  x  x + 0  x
+-identityʳ x = +-comm x _  +-identityˡ x

+-assoc :  x y z  x + (y + z)  (x + y) + z
+-assoc = SetQuotient.elimProp3  _ _ _  isSetℚ _ _)
   { (a , b) (c , d) (e , f) i  [ eq a (ℕ₊₁→ℤ b) c (ℕ₊₁→ℤ d) e (ℕ₊₁→ℤ f) i / ·₊₁-assoc b d f i ] })
  where eq₁ :  a b c  (a ℤ.· b) ℤ.· c  a ℤ.· (c ℤ.· b)
        eq₁ a b c = sym (ℤ.·-assoc a b c)  cong (a ℤ.·_) (ℤ.·-comm b c)
        eq₂ :  a b c  (a ℤ.· b) ℤ.· c  (a ℤ.· c) ℤ.· b
        eq₂ a b c = eq₁ a b c  ℤ.·-assoc a c b

        eq :  a b c d e f  Path  _ _
        eq a b c d e f =
          a ℤ.· (d ℤ.· f) ℤ.+ (c ℤ.· f ℤ.+ e ℤ.· d) ℤ.· b
            ≡[ i ]⟨ a ℤ.· (d ℤ.· f) ℤ.+ ℤ.·-distribʳ (c ℤ.· f) (e ℤ.· d) b (~ i) 
          a ℤ.· (d ℤ.· f) ℤ.+ ((c ℤ.· f) ℤ.· b ℤ.+ (e ℤ.· d) ℤ.· b)
            ≡[ i ]⟨ ℤ.+-assoc (ℤ.·-assoc a d f i) (eq₂ c f b i) (eq₁ e d b i) i 
          ((a ℤ.· d) ℤ.· f ℤ.+ (c ℤ.· b) ℤ.· f) ℤ.+ e ℤ.· (b ℤ.· d)
            ≡[ i ]⟨ ℤ.·-distribʳ (a ℤ.· d) (c ℤ.· b) f i ℤ.+ e ℤ.· (b ℤ.· d) 
          (a ℤ.· d ℤ.+ c ℤ.· b) ℤ.· f ℤ.+ e ℤ.· (b ℤ.· d) 


_·_ :     
_·_ = onCommonDenomSym
   { (a , _) (c , _)  a ℤ.· c })
   { (a , _) (c , _)  ℤ.·-comm a c })
   { (a , b) (c , d) (e , _) p  lem₁ a (ℕ₊₁→ℤ d) c (ℕ₊₁→ℤ b) e p })

·-comm :  x y  x · y  y · x
·-comm = onCommonDenomSym-comm  { (a , _) (c , _)  ℤ.·-comm a c })

·-identityˡ :  x  1 · x  x
·-identityˡ = SetQuotient.elimProp  _  isSetℚ _ _)
   { (a , b) i  [ ℤ.·-identityˡ a i / ·₊₁-identityˡ b i ] })

·-identityʳ :  x  x · 1  x
·-identityʳ = SetQuotient.elimProp  _  isSetℚ _ _)
   { (a , b) i  [ ℤ.·-identityʳ a i / ·₊₁-identityʳ b i ] })

·-zeroˡ :  x  0 · x  0
·-zeroˡ = SetQuotient.elimProp  _  isSetℚ _ _)
   { (a , b)   i  [ p a b i / 1 ·₊₁ b ])  ℚ-cancelʳ b })
  where p :  a b  0 ℤ.· a  0 ℤ.· ℕ₊₁→ℤ b
        p a b = ℤ.·-zeroˡ {ℤ.spos} a  sym (ℤ.·-zeroˡ {ℤ.spos} (ℕ₊₁→ℤ b))

·-zeroʳ :  x  x · 0  0
·-zeroʳ = SetQuotient.elimProp  _  isSetℚ _ _)
   { (a , b)   i  [ p a b i / b ·₊₁ 1 ])  ℚ-cancelˡ b })
  where p :  a b  a ℤ.· 0  ℕ₊₁→ℤ b ℤ.· 0
        p a b = ℤ.·-zeroʳ {ℤ.spos} a  sym (ℤ.·-zeroʳ {ℤ.spos} (ℕ₊₁→ℤ b))

·-assoc :  x y z  x · (y · z)  (x · y) · z
·-assoc = SetQuotient.elimProp3  _ _ _  isSetℚ _ _)
   { (a , b) (c , d) (e , f) i  [ ℤ.·-assoc a c e i / ·₊₁-assoc b d f i ] })

·-distribˡ :  x y z  (x · y) + (x · z)  x · (y + z)
·-distribˡ = SetQuotient.elimProp3  _ _ _  isSetℚ _ _)
   { (a , b) (c , d) (e , f)  eq a b c d e f })
  where lem :  {} {A : Type } (_·_ : A  A  A)
                (·-comm :  x y  x · y  y · x)
                (·-assoc :  x y z  x · (y · z)  (x · y) · z)
                a c b d
               (a · c) · (b · d)  (a · (c · d)) · b
        lem _·_ ·-comm ·-assoc a c b d =
          (a · c) · (b · d) ≡[ i ]⟨ (a · c) · ·-comm b d i 
          (a · c) · (d · b) ≡⟨ ·-assoc (a · c) d b 
          ((a · c) · d) · b ≡[ i ]⟨ ·-assoc a c d (~ i) · b 
          (a · (c · d)) · b 

        lemℤ   = lem ℤ._·_ ℤ.·-comm ℤ.·-assoc
        lemℕ₊₁ = lem _·₊₁_ ·₊₁-comm ·₊₁-assoc

        eq :  a b c d e f 
               [ (a ℤ.· c) ℤ.· ℕ₊₁→ℤ (b ·₊₁ f) ℤ.+ (a ℤ.· e) ℤ.· ℕ₊₁→ℤ (b ·₊₁ d)
                 / (b ·₊₁ d) ·₊₁ (b ·₊₁ f) ]
              [ a ℤ.· (c ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ d)
                / b ·₊₁ (d ·₊₁ f) ]
        eq a b c d e f =
           i  [ lemℤ a c (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ f) i ℤ.+ lemℤ a e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) i
                   / lemℕ₊₁ b d b f i ]) 
           i  [ ℤ.·-distribʳ (a ℤ.· (c ℤ.· ℕ₊₁→ℤ f)) (a ℤ.· (e ℤ.· ℕ₊₁→ℤ d)) (ℕ₊₁→ℤ b) i
                   / (b ·₊₁ (d ·₊₁ f)) ·₊₁ b ]) 
          ℚ-cancelʳ {a ℤ.· (c ℤ.· ℕ₊₁→ℤ f) ℤ.+ a ℤ.· (e ℤ.· ℕ₊₁→ℤ d)} {b ·₊₁ (d ·₊₁ f)} b 
           i  [ ℤ.·-distribˡ a (c ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ d) i
                   / b ·₊₁ (d ·₊₁ f) ])

·-distribʳ :  x y z  (x · z) + (y · z)  (x + y) · z
·-distribʳ x y z =  i  ·-comm x z i + ·-comm y z i)  ·-distribˡ z x y  ·-comm z (x + y)


-_ :   
- x = -1 · x

negate-invol :  x  - - x  x
negate-invol x = ·-assoc -1 -1 x  ·-identityˡ x

negateEquiv :   
negateEquiv = isoToEquiv (iso -_ -_ negate-invol negate-invol)

negateEq :   
negateEq = ua negateEquiv

+-inverseˡ :  x  (- x) + x  0
+-inverseˡ x =  i  (-1 · x) + ·-identityˡ x (~ i))  ·-distribʳ -1 1 x  ·-zeroˡ x

_-_ :     
x - y = x + (- y)

+-inverseʳ :  x  x - x  0
+-inverseʳ x = +-comm x (- x)  +-inverseˡ x

+-injˡ :  x y z  x + y  x + z  y  z
+-injˡ x y z p = sym (q y)  cong ((- x) +_) p  q z
  where q :  y  (- x) + (x + y)  y
        q y = +-assoc (- x) x y  cong (_+ y) (+-inverseˡ x)  +-identityˡ y

+-injʳ :  x y z  x + y  z + y  x  z
+-injʳ x y z p = +-injˡ y x z (+-comm y x  p  +-comm z y)