{-# OPTIONS --safe #-}
module Cubical.Data.Rationals.MoreRationals.QuoQ.Base where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv

open import Cubical.Data.Nat as  using (discreteℕ)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
open import Cubical.Data.Int.MoreInts.QuoInt

open import Cubical.HITs.SetQuotients as SetQuotient
  using ([_]; eq/; discreteSetQuotients) renaming (_/_ to _//_) public

open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base
open BinaryRelation

ℕ₊₁→ℤ : ℕ₊₁  
ℕ₊₁→ℤ n = pos (ℕ₊₁→ℕ n)

private
  ℕ₊₁→ℤ-hom :  m n  ℕ₊₁→ℤ (m ·₊₁ n)  ℕ₊₁→ℤ m · ℕ₊₁→ℤ n
  ℕ₊₁→ℤ-hom _ _ = refl


-- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book)

_∼_ :  × ℕ₊₁   × ℕ₊₁  Type₀
(a , b)  (c , d) = a · ℕ₊₁→ℤ d  c · ℕ₊₁→ℤ b

 : Type₀
 = ( × ℕ₊₁) // _∼_


isSetℚ : isSet 
isSetℚ = SetQuotient.squash/

[_/_] :   ℕ₊₁  
[ a / b ] = [ a , b ]


isEquivRel∼ : isEquivRel _∼_
isEquivRel.reflexive isEquivRel∼ (a , b) = refl
isEquivRel.symmetric isEquivRel∼ (a , b) (c , d) = sym
isEquivRel.transitive isEquivRel∼ (a , b) (c , d) (e , f) p q = ·-injʳ _ _ _ r
  where r = (a · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ d ≡[ i ]⟨ ·-comm a (ℕ₊₁→ℤ f) i · ℕ₊₁→ℤ d 
            (ℕ₊₁→ℤ f · a) · ℕ₊₁→ℤ d ≡⟨ sym (·-assoc (ℕ₊₁→ℤ f) a (ℕ₊₁→ℤ d)) 
            ℕ₊₁→ℤ f · (a · ℕ₊₁→ℤ d) ≡[ i ]⟨ ℕ₊₁→ℤ f · p i 
            ℕ₊₁→ℤ f · (c · ℕ₊₁→ℤ b) ≡⟨ ·-assoc (ℕ₊₁→ℤ f) c (ℕ₊₁→ℤ b) 
            (ℕ₊₁→ℤ f · c) · ℕ₊₁→ℤ b ≡[ i ]⟨ ·-comm (ℕ₊₁→ℤ f) c i · ℕ₊₁→ℤ b 
            (c · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ b ≡[ i ]⟨ q i · ℕ₊₁→ℤ b 
            (e · ℕ₊₁→ℤ d) · ℕ₊₁→ℤ b ≡⟨ sym (·-assoc e (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b)) 
            e · (ℕ₊₁→ℤ d · ℕ₊₁→ℤ b) ≡[ i ]⟨ e · ·-comm (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b) i 
            e · (ℕ₊₁→ℤ b · ℕ₊₁→ℤ d) ≡⟨ ·-assoc e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) 
            (e · ℕ₊₁→ℤ b) · ℕ₊₁→ℤ d 

eq/⁻¹ :  x y  Path  [ x ] [ y ]  x  y
eq/⁻¹ = SetQuotient.effective  _ _  isSetℤ _ _) isEquivRel∼

discreteℚ : Discrete 
discreteℚ = discreteSetQuotients isEquivRel∼  _ _  discreteℤ _ _)


-- Natural number and negative integer literals for ℚ

open import Cubical.Data.Nat.Literals public

instance
  fromNatℚ : HasFromNat 
  fromNatℚ = record { Constraint = λ _  Unit ; fromNat = λ n  [ pos n / 1 ] }

instance
  fromNegℚ : HasFromNeg 
  fromNegℚ = record { Constraint = λ _  Unit ; fromNeg = λ n  [ neg n / 1 ] }