{-# OPTIONS --safe #-}
module Cubical.Data.FinSet.FiniteChoice where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_)
open import Cubical.HITs.PropositionalTruncation as Prop
open import Cubical.Data.Nat
open import Cubical.Data.Unit
open import Cubical.Data.Empty
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.SumFin
open import Cubical.Data.FinSet.Base
open import Cubical.Data.FinSet.Properties
private
variable
ℓ ℓ' : Level
choice≃Fin :
{n : ℕ}(Y : Fin n → Type ℓ) → ((x : Fin n) → ∥ Y x ∥₁) ≃ ∥ ((x : Fin n) → Y x) ∥₁
choice≃Fin {n = 0} Y =
isContr→≃Unit (isContrΠ⊥)
⋆ invEquiv (propTruncIdempotent≃ isPropUnit)
⋆ propTrunc≃ (invEquiv (isContr→≃Unit (isContrΠ⊥ {A = Y})))
choice≃Fin {n = suc n} Y =
Π⊎≃
⋆ Σ-cong-equiv-fst (ΠUnit (λ x → ∥ Y (inl x) ∥₁))
⋆ Σ-cong-equiv-snd (λ _ → choice≃Fin {n = n} (λ x → Y (inr x)))
⋆ Σ-cong-equiv-fst (propTrunc≃ (invEquiv (ΠUnit (λ x → Y (inl x)))))
⋆ ∥∥-×-≃
⋆ propTrunc≃ (invEquiv (Π⊎≃ {E = Y}))
module _
(X : Type ℓ)(p : isFinOrd X)
(Y : X → Type ℓ') where
private
e = p .snd
choice≃' : ((x : X) → ∥ Y x ∥₁) ≃ ∥ ((x : X) → Y x) ∥₁
choice≃' =
equivΠ {B' = λ x → ∥ Y (invEq e x) ∥₁} e (transpFamily p)
⋆ choice≃Fin _
⋆ propTrunc≃ (invEquiv (equivΠ {B' = λ x → Y (invEq e x)} e (transpFamily p)))
module _
(X : FinSet ℓ)
(Y : X .fst → Type ℓ') where
choice≃ : ((x : X .fst) → ∥ Y x ∥₁) ≃ ∥ ((x : X .fst) → Y x) ∥₁
choice≃ =
Prop.rec
(isOfHLevel≃ 1 (isPropΠ (λ x → isPropPropTrunc)) isPropPropTrunc)
(λ p → choice≃' (X .fst) (_ , p) Y) (X .snd .snd)
choice : ((x : X .fst) → ∥ Y x ∥₁) → ∥ ((x : X .fst) → Y x) ∥₁
choice = choice≃ .fst