{-# OPTIONS --safe --lossy-unification #-}
module Cubical.AlgebraicGeometry.ZariskiLattice.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Powerset renaming (_∈_ to _∈p_; _⊆_ to _⊆p_; subst-∈ to subst-∈p)
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_
; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm
; ·-identityʳ to ·ℕ-rid)
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.PropositionalTruncation.Monad
open import Cubical.Data.FinData
open import Cubical.Data.Unit
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Order.Poset
open import Cubical.Relation.Binary.Order.Proset
open import Cubical.Relation.Binary.Order.Poset.Instances.PosetalReflection as PR
open import Cubical.Functions.Embedding
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.BinomialThm
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.Ideal.Sum
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.RadicalIdeal
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Algebra.Matrix
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.Tactics.CommRingSolver
open Iso
open BinaryRelation
open isEquivRel
private variable
ℓ ℓ' : Level
module ZarLat (R' : CommRing ℓ) where
open CommRingStr (snd R')
open RingTheory (CommRing→Ring R')
open Sum (CommRing→Ring R')
open CommRingTheory R'
open Exponentiation R'
open BinomialThm R'
open CommIdeal R'
open RadicalIdeal R'
open isCommIdeal
open ProdFin R'
open IdealSum R'
private
R = fst R'
A = Σ[ n ∈ ℕ ] (FinVec R n)
⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal
⟨ V ⟩ = ⟨ V ⟩[ R' ]
_≼_ : A → A → Type ℓ
(_ , α) ≼ (_ , β) = √ ⟨ α ⟩ ⊆ √ ⟨ β ⟩
isRefl≼ : ∀ {a} → a ≼ a
isRefl≼ = ⊆-refl _
isTrans≼ : ∀ {a b c : A} → a ≼ b → b ≼ c → a ≼ c
isTrans≼ = ⊆-trans _ _ _
≼PropValued : isPropValued _≼_
≼PropValued x y = ⊆-isProp _ _
isProset≼ : IsProset _≼_
isProset≼ = isproset (isSetΣ isSetℕ λ x → isSet→ is-set) ≼PropValued (λ _ → isRefl≼) (λ _ _ _ → isTrans≼)
_∼_ : A → A → Type ℓ
_∼_ = SymKernel _≼_
∼PropValued : isPropValued (_∼_)
∼PropValued _ _ = isProp× (≼PropValued _ _) (≼PropValued _ _)
∼EquivRel : isEquivRel (_∼_)
∼EquivRel = isProset→isEquivRelSymKernel isProset≼
private
AProset : Proset ℓ ℓ
AProset = _ , prosetstr _≼_ isProset≼
ZLPoset : Poset ℓ ℓ
ZLPoset = ReflectionPoset AProset
ZL : Type ℓ
ZL = ZLPoset .fst
_≤ZL_ = ZLPoset .snd .PosetStr._≤_
isPosetZL = ZLPoset .snd .PosetStr.isPoset
isProsetZL = isPoset→isProset isPosetZL
0a : A
0a = 0 , λ ()
1a : A
1a = 1 , λ _ → 1r
_∼≡_ : A → A → Type (ℓ-suc ℓ)
(_ , α) ∼≡ (_ , β) = √ ⟨ α ⟩ ≡ √ ⟨ β ⟩
≡→∼ : ∀ {a b : A} → a ∼≡ b → a ∼ b
≡→∼ r = ⊆-refl-consequence _ _ (cong fst r)
∼→≡ : ∀ {a b : A} → a ∼ b → a ∼≡ b
∼→≡ r = CommIdeal≡Char (r .fst) (r .snd)
∼≃≡ : ∀ {a b : A} → (a ∼ b) ≃ (a ∼≡ b)
∼≃≡ = propBiimpl→Equiv (∼PropValued _ _) (isSetCommIdeal _ _) ∼→≡ ≡→∼
0z : ZL
0z = [ 0a ]
0z-least : isLeast isProsetZL (_ , id↪ _) 0z
0z-least = []presLeast AProset 0a λ x → √FGIdealCharRImpl _ _ λ ()
1z : ZL
1z = [ 1a ]
1z-greatest : isGreatest isProsetZL (_ , id↪ _) 1z
1z-greatest = []presGreatest AProset 1a λ x → √FGIdealCharRImpl _ _ λ _ →
∣ 0 , ∣ (λ _ → 1r) , solve! R' ∣₁ ∣₁
_∨a_ : A → A → A
(_ , α) ∨a (_ , β) = _ , α ++Fin β
∨a-join : ∀ x y → isJoin isProset≼ x y (x ∨a y)
∨a-join (_ , α) (_ , β) (_ , γ) = propBiimpl→Equiv (≼PropValued _ _) (isProp× (≼PropValued _ _) (≼PropValued _ _)) to fo
where
to : _
to α∨β⊆γ .fst = ⊆-trans _ _ _
(√Resp⊆ ⟨ α ⟩ ⟨ α ++Fin β ⟩ (⊆-trans _ _ _ (+iLincl ⟨ α ⟩ ⟨ β ⟩) (FGIdealAddLemmaRIncl _ α β))) α∨β⊆γ
to α∨β⊆γ .snd = ⊆-trans _ _ _
(√Resp⊆ ⟨ β ⟩ ⟨ α ++Fin β ⟩ (⊆-trans _ _ _ (+iRincl ⟨ α ⟩ ⟨ β ⟩) (FGIdealAddLemmaRIncl _ α β))) α∨β⊆γ
fo : _
fo (α⊆γ , β⊆γ) = ⊆-trans _ _ _ (√Resp⊆ ⟨ α ++Fin β ⟩ (⟨ α ⟩ +i ⟨ β ⟩) $ FGIdealAddLemmaLIncl _ α β) λ x x∈√α+β → do
(n , x^n∈α+β) ← x∈√α+β
((y , z) , y∈α , z∈β , x^n≡y+z) ← x^n∈α+β
^∈√→∈√ _ x n $ subst-∈ (√ ⟨ γ ⟩) (sym x^n≡y+z) $
√ ⟨ γ ⟩ .snd .+Closed (α⊆γ y (∈→∈√ _ y y∈α)) (β⊆γ z (∈→∈√ _ z z∈β))
ZL-joins : isJoinSemipseudolattice ZLPoset
ZL-joins = hasBinJoins AProset λ x y → _ , ∨a-join x y
_∨z_ : ZL → ZL → ZL
x ∨z y = ZL-joins x y .fst
_∧a_ : A → A → A
(_ , α) ∧a (_ , β) = _ , α ··Fin β
∧a-meet : ∀ x y → isMeet isProset≼ x y (x ∧a y)
∧a-meet (_ , α) (_ , β) (_ , γ) = propBiimpl→Equiv (≼PropValued _ _) (isProp× (≼PropValued _ _) (≼PropValued _ _)) to fo
where
to : _
to γ≼α∧β .fst = ⊆-trans _ _ _ γ≼α∧β $ √Resp⊆ ⟨ α ··Fin β ⟩ ⟨ α ⟩ $
⊆-trans _ _ _ (FGIdealMultLemmaLIncl _ α β) (·iLincl ⟨ α ⟩ ⟨ β ⟩)
to γ≼α∧β .snd = ⊆-trans _ _ _ γ≼α∧β $ √Resp⊆ ⟨ α ··Fin β ⟩ ⟨ β ⟩ $
⊆-trans _ _ _ (FGIdealMultLemmaLIncl _ α β) (·iRincl ⟨ α ⟩ ⟨ β ⟩)
fo : _
fo (γ≼α , γ≼β) = ⊆-trans _ _ _ (λ x x∈√γ →
∣ 2 , subst-∈ (√ ⟨ α ⟩ ·i √ ⟨ β ⟩) (solve! R') (prodInProd _ _ x x (γ≼α x x∈√γ) (γ≼β x x∈√γ)) ∣₁
) $ ⊆-trans _ _ _ (√·ContrLIncl ⟨ α ⟩ ⟨ β ⟩) $
√Resp⊆ (⟨ α ⟩ ·i ⟨ β ⟩) ⟨ α ··Fin β ⟩ $ FGIdealMultLemmaRIncl _ α β
ZL-meets : isMeetSemipseudolattice ZLPoset
ZL-meets = hasBinMeets AProset λ x y → _ , ∧a-meet x y
_∧z_ : ZL → ZL → ZL
x ∧z y = ZL-meets x y .fst
∨zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∨z (𝔟 ∨z 𝔠) ≡ (𝔞 ∨z 𝔟) ∨z 𝔠
∨zAssoc = joinAssoc isPosetZL ZL-joins
∨zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∨z 𝔟 ≡ 𝔟 ∨z 𝔞
∨zComm = joinComm isPosetZL ZL-joins
∨zLid : ∀ (𝔞 : ZL) → 0z ∨z 𝔞 ≡ 𝔞
∨zLid = SQ.elimProp (λ _ → squash/ _ _) λ _ → refl
∨zRid : ∀ (𝔞 : ZL) → 𝔞 ∨z 0z ≡ 𝔞
∨zRid _ = ∨zComm _ _ ∙ ∨zLid _
∧zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∧z 𝔠) ≡ (𝔞 ∧z 𝔟) ∧z 𝔠
∧zAssoc = meetAssoc isPosetZL ZL-meets
∧zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z 𝔟 ≡ 𝔟 ∧z 𝔞
∧zComm = meetComm isPosetZL ZL-meets
∧zRid : ∀ (𝔞 : ZL) → 𝔞 ∧z 1z ≡ 𝔞
∧zRid = SQ.elimProp (λ _ → squash/ _ _) λ (_ , α) → eq/ _ _ $ ≡→∼ $ cong √ $
⟨ α ··Fin (replicateFinVec 1 1r) ⟩ ≡⟨ FGIdealMultLemma _ _ _ ⟩
⟨ α ⟩ ·i ⟨ (replicateFinVec 1 1r) ⟩ ≡⟨ cong (⟨ α ⟩ ·i_) (contains1Is1 _ (indInIdeal _ _ zero)) ⟩
⟨ α ⟩ ·i 1Ideal ≡⟨ ·iRid _ ⟩
⟨ α ⟩ ∎
∧zAbsorb∨z : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z (𝔞 ∨z 𝔟) ≡ 𝔞
∧zAbsorb∨z = MeetAbsorbLJoin ZLPoset (ZL-meets , ZL-joins)
∧zLDist∨z : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∨z 𝔠) ≡ (𝔞 ∧z 𝔟) ∨z (𝔞 ∧z 𝔠)
∧zLDist∨z = SQ.elimProp3 (λ _ _ _ → squash/ _ _)
λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (≡→∼
(√ ⟨ α ··Fin (β ++Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩
√ (⟨ α ⟩ ·i ⟨ β ++Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ _ _) ⟩
√ (⟨ α ⟩ ·i (⟨ β ⟩ +i ⟨ γ ⟩)) ≡⟨ cong √ (·iRdist+i _ _ _) ⟩
√ (⟨ α ⟩ ·i ⟨ β ⟩ +i ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong₂ (λ x y → √ (x +i y))
(sym (FGIdealMultLemma _ _ _))
(sym (FGIdealMultLemma _ _ _)) ⟩
√ (⟨ α ··Fin β ⟩ +i ⟨ α ··Fin γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ _ _)) ⟩
√ ⟨ (α ··Fin β) ++Fin (α ··Fin γ) ⟩ ∎))
ZariskiLattice : DistLattice ℓ
fst ZariskiLattice = ZL
DistLatticeStr.0l (snd ZariskiLattice) = 0z
DistLatticeStr.1l (snd ZariskiLattice) = 1z
DistLatticeStr._∨l_ (snd ZariskiLattice) = _∨z_
DistLatticeStr._∧l_ (snd ZariskiLattice) = _∧z_
DistLatticeStr.isDistLattice (snd ZariskiLattice) =
makeIsDistLattice∧lOver∨l squash/ ∨zAssoc ∨zRid ∨zComm
∧zAssoc ∧zRid ∧zComm ∧zAbsorb∨z ∧zLDist∨z