{-# OPTIONS --safe --lossy-unification #-}
module Cubical.AlgebraicGeometry.ZariskiLattice.Base where


open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport

import Cubical.Data.Empty as 
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_
                                      ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
                                      ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm
                                      ; ·-identityʳ to ·ℕ-rid)
open import Cubical.Data.Sigma.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.FinData
open import Cubical.Data.Unit
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Order.Poset

open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.BinomialThm
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.Ideal.Sum
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.RadicalIdeal
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Algebra.Matrix

open import Cubical.HITs.SetQuotients as SQ

open Iso
open BinaryRelation
open isEquivRel

private
  variable
     ℓ' : Level


module ZarLat (R' : CommRing ) where
 open CommRingStr (snd R')
 open RingTheory (CommRing→Ring R')
 open Sum (CommRing→Ring R')
 open CommRingTheory R'
 open Exponentiation R'
 open BinomialThm R'
 open CommIdeal R'
 open RadicalIdeal R'
 open isCommIdeal
 open ProdFin R'
 open IdealSum R'

 private
  R = fst R'
  A = Σ[ n   ] (FinVec R n)
  ⟨_⟩ : {n : }  FinVec R n  CommIdeal
   V  =  V ⟩[ R' ]

 -- This is small!
 _≼_ : A  A  Type 
 (_ , α)  (_ , β) =  i  α i    β 

 private
  isRefl≼ :  {a}  a  a
  isRefl≼ i = ∈→∈√ _ _ (indInIdeal _ _ i)

  isTrans≼ :  {a b c : A}  a  b  b  c  a  c
  isTrans≼ a≼b b≼c i = (√FGIdealCharRImpl _ _ b≼c) _ (a≼b i)

 _∼_ :  A  A  Type  -- \sim
 α  β = (α  β) × (β  α)

 ∼PropValued : isPropValued (_∼_)
 ∼PropValued (_ , α) (_ , β) = isProp× (isPropΠ  i    β  .fst (α i) .snd))
                                       (isPropΠ  i    α  .fst (β i) .snd))

 ∼EquivRel : isEquivRel (_∼_)
 reflexive ∼EquivRel _ = isRefl≼ , isRefl≼
 symmetric ∼EquivRel _ _ = Σ-swap-Iso .fun
 transitive ∼EquivRel _ _ _ a∼b b∼c = isTrans≼ (fst a∼b) (fst b∼c) , isTrans≼ (snd b∼c) (snd a∼b)

 -- lives in the same universe as R
 ZL : Type 
 ZL = A / (_∼_)

 --  need something big in our proofs though:
 _∼≡_ : A  A  Type (ℓ-suc )
 (_ , α) ∼≡ (_ , β) =   α     β 

 ≡→∼ :  {a b : A}  a ∼≡ b  a  b
 ≡→∼ r = √FGIdealCharLImpl _  _   x h  subst  p  x  p) r h)
       , √FGIdealCharLImpl _  _   x h  subst  p  x  p) (sym r) h)

 ∼→≡ :  {a b : A}  a  b  a ∼≡ b
 ∼→≡ r = CommIdeal≡Char (√FGIdealCharRImpl _  _  (fst r))
                        (√FGIdealCharRImpl _  _  (snd r))

 ∼≃≡ :  {a b : A}  (a  b)  (a ∼≡ b)
 ∼≃≡ = propBiimpl→Equiv (∼PropValued _ _) (isSetCommIdeal _ _) ∼→≡ ≡→∼

 0z : ZL
 0z = [ 0 ,  ()) ]

 1z : ZL
 1z = [ 1 , (replicateFinVec 1 1r) ]

 _∨z_ : ZL  ZL  ZL
 _∨z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel)
                           (_ , α) (_ , β)  (_ , α ++Fin β))
                           (_ , α) (_ , β)  ≡→∼ (cong 
                             (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α))))
    λ (_ , α) (_ , β) (_ , γ) α∼β  ≡→∼ (--need to show α∨γ ∼ β∨γ
        α ++Fin γ       ≡⟨ cong  (FGIdealAddLemma _ α γ) 
       ( α  +i  γ )    ≡⟨ sym (√+LContr _ _) 
       (  α  +i  γ ) ≡⟨ cong  I   (I +i  γ )) (∼→≡ α∼β) 
       (  β  +i  γ ) ≡⟨ √+LContr _ _ 
       ( β  +i  γ )    ≡⟨ cong  (sym (FGIdealAddLemma _ β γ)) 
        β ++Fin γ  )

 _∧z_ : ZL  ZL  ZL
 _∧z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel)
                           (_ , α) (_ , β)  (_ , α ··Fin β))
                           (_ , α) (_ , β)  ≡→∼ (cong 
                             (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α))))
    λ (_ , α) (_ , β) (_ , γ) α∼β  ≡→∼ (--need to show α∧γ ∼ β∧γ
        α ··Fin γ        ≡⟨ cong  (FGIdealMultLemma _ α γ) 
       ( α  ·i  γ )    ≡⟨ sym (√·LContr _ _) 
       (  α  ·i  γ ) ≡⟨ cong  I   (I ·i  γ )) (∼→≡ α∼β) 
       (  β  ·i  γ ) ≡⟨ √·LContr _ _ 
       ( β  ·i  γ )    ≡⟨ cong  (sym (FGIdealMultLemma _ β γ)) 
        β ··Fin γ  )

 -- join axioms
 ∨zAssoc :  (𝔞 𝔟 𝔠 : ZL)  𝔞 ∨z (𝔟 ∨z 𝔠)  (𝔞 ∨z 𝔟) ∨z 𝔠
 ∨zAssoc = SQ.elimProp3  _ _ _  squash/ _ _)
          λ (_ , α) (_ , β) (_ , γ)  eq/ _ _ (≡→∼ (cong  (IdealAddAssoc _ _ _ _)))

 ∨zComm :  (𝔞 𝔟 : ZL)  𝔞 ∨z 𝔟  𝔟 ∨z 𝔞
 ∨zComm = SQ.elimProp2  _ _  squash/ _ _)
        λ (_ , α) (_ , β)  eq/ _ _
          (≡→∼ (cong  (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α))))

 ∨zLid :  (𝔞 : ZL)  0z ∨z 𝔞  𝔞
 ∨zLid = SQ.elimProp  _  squash/ _ _) λ _  eq/ _ _ (reflexive ∼EquivRel _)

 ∨zRid :  (𝔞 : ZL)  𝔞 ∨z 0z  𝔞
 ∨zRid _ = ∨zComm _ _  ∨zLid _


 -- -- meet axioms
 ∧zAssoc :  (𝔞 𝔟 𝔠 : ZL)  𝔞 ∧z (𝔟 ∧z 𝔠)  (𝔞 ∧z 𝔟) ∧z 𝔠
 ∧zAssoc = SQ.elimProp3  _ _ _  squash/ _ _)
    λ (_ , α) (_ , β) (_ , γ)  eq/ _ _ (≡→∼
      (  α ··Fin (β ··Fin γ)      ≡⟨ cong  (FGIdealMultLemma _ _ _) 
        ( α  ·i  β ··Fin γ )    ≡⟨ cong  x   ( α  ·i x)) (FGIdealMultLemma _ _ _) 
        ( α  ·i ( β  ·i  γ )) ≡⟨ cong  (·iAssoc _ _ _) 
        (( α  ·i  β ) ·i  γ ) ≡⟨ cong  x   (x ·i  γ )) (sym (FGIdealMultLemma _ _ _)) 
        ( α ··Fin β  ·i  γ )    ≡⟨ cong  (sym (FGIdealMultLemma _ _ _)) 
         (α ··Fin β) ··Fin γ      ))

 ∧zComm :  (𝔞 𝔟 : ZL)  𝔞 ∧z 𝔟  𝔟 ∧z 𝔞
 ∧zComm = SQ.elimProp2  _ _  squash/ _ _)
        λ (_ , α) (_ , β)  eq/ _ _ (≡→∼
          (cong  (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α))))

 ∧zRid :  (𝔞 : ZL)  𝔞 ∧z 1z  𝔞
 ∧zRid = SQ.elimProp  _  squash/ _ _)
   λ (_ , α)  eq/ _ _ (≡→∼ (cong 
     ( α ··Fin (replicateFinVec 1 1r)  ≡⟨ FGIdealMultLemma _ _ _ 
       α  ·i  (replicateFinVec 1 1r)  ≡⟨ cong ( α  ·i_) (contains1Is1 _ (indInIdeal _ _ zero)) 
       α  ·i 1Ideal                     ≡⟨ ·iRid _ 
       α  )))


 -- absorption and distributivity
 ∧zAbsorb∨z :  (𝔞 𝔟 : ZL)  𝔞 ∧z (𝔞 ∨z 𝔟)  𝔞
 ∧zAbsorb∨z = SQ.elimProp2  _ _  squash/ _ _)
            λ (_ , α) (_ , β)  eq/ _ _ (≡→∼
              (  α ··Fin (α ++Fin β)      ≡⟨ cong  (FGIdealMultLemma _ α (α ++Fin β)) 
                ( α  ·i  α ++Fin β )    ≡⟨ cong  x   ( α  ·i x)) (FGIdealAddLemma _ α β) 
                ( α  ·i ( α  +i  β )) ≡⟨ √·Absorb+ _ _ 
                 α  ))

 ∧zLDist∨z :  (𝔞 𝔟 𝔠 : ZL)  𝔞 ∧z (𝔟 ∨z 𝔠)  (𝔞 ∧z 𝔟) ∨z (𝔞 ∧z 𝔠)
 ∧zLDist∨z = SQ.elimProp3  _ _ _  squash/ _ _)
   λ (_ , α) (_ , β) (_ , γ)  eq/ _ _ (≡→∼
     (  α ··Fin (β ++Fin γ)             ≡⟨ cong  (FGIdealMultLemma _ _ _) 
       ( α  ·i  β ++Fin γ )           ≡⟨ cong  x   ( α  ·i x)) (FGIdealAddLemma _ _ _) 
       ( α  ·i ( β  +i  γ ))        ≡⟨ cong  (·iRdist+i _ _ _) 
      -- L/R-dist are swapped
      -- in Lattices vs Rings
       ( α  ·i  β  +i  α  ·i  γ ) ≡⟨ cong₂  x y   (x +i y))
                                                     (sym (FGIdealMultLemma _ _ _))
                                                     (sym (FGIdealMultLemma _ _ _)) 
       ( α ··Fin β  +i  α ··Fin γ )   ≡⟨ cong  (sym (FGIdealAddLemma _ _ _)) 
        (α ··Fin β) ++Fin (α ··Fin γ)   ))


 ZariskiLattice : DistLattice 
 fst ZariskiLattice = ZL
 DistLatticeStr.0l (snd ZariskiLattice) = 0z
 DistLatticeStr.1l (snd ZariskiLattice) = 1z
 DistLatticeStr._∨l_ (snd ZariskiLattice) = _∨z_
 DistLatticeStr._∧l_ (snd ZariskiLattice) = _∧z_
 DistLatticeStr.isDistLattice (snd ZariskiLattice) =
   makeIsDistLattice∧lOver∨l squash/ ∨zAssoc ∨zRid ∨zComm
                                       ∧zAssoc ∧zRid ∧zComm ∧zAbsorb∨z ∧zLDist∨z