{-
  Definition of (commutative) local rings.

  Note that local rings are more intricate constructively than classically.
  See for example

    "A Course in Constructive Algebra" by Mines, Richman & Ruitenberg, p. 96,

  where (non-commutative) local rings are defined by the two characterizations
  given at the end of this file but without the requirement that 1 is different
  from 0. Or see the nLab page:

    https://ncatlab.org/nlab/show/local+ring
-}

{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.LocalRing where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Foundations.Structure using (⟨_⟩)
open import Cubical.Foundations.Powerset using (_∈_; )
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence using (hPropExt)

open import Cubical.Data.Nat using ()
open import Cubical.Data.FinData using (FinVec; Fin; ¬Fin0; zero; suc; one)
open import Cubical.Data.Sigma using (∃-syntax; _×_)
open import Cubical.Data.Sum as  using (_⊎_)
open import Cubical.Data.Empty as  using (isProp⊥)

open import Cubical.Relation.Nullary using (¬_)

open import Cubical.HITs.PropositionalTruncation as ∥_∥₁ using (isPropPropTrunc; ∣_∣₁; ∥_∥₁)

open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FGIdeal using (generatedIdeal; linearCombination)
open import Cubical.Algebra.CommRing.Ideal using (module CommIdeal)
open import Cubical.Algebra.Ring.BigOps using (module Sum)

open import Cubical.Tactics.CommRingSolver


private
  variable
     : Level

module _ (R : CommRing ) where
  open Sum (CommRing→Ring R) using ()

  isLocal : Type 
  isLocal =
    {n : } 
    (xs : FinVec  R  n) 
     xs  R ˣ 
    ∃[ i  Fin n ] (xs i  R ˣ)

  isPropIsLocal : isProp isLocal
  isPropIsLocal = isPropImplicitΠ λ _  isPropΠ2 λ _ _  isPropPropTrunc

  module Consequences (local : isLocal) where
    open CommRingStr (snd R)
    open Units R

    1≢0 : ¬ (1r  0r)
    1≢0 1≡0 = ∥_∥₁.rec isProp⊥ (¬Fin0  fst) (local xs 0∈Rˣ)
      where
      xs : FinVec  R  0
      xs ()
      0∈Rˣ : 0r  R ˣ
      0∈Rˣ = subst (_∈ (R ˣ)) 1≡0 RˣContainsOne

    invertibleInBinarySum :
      {x y :  R } 
      x + y  R ˣ 
       (x  R ˣ)   (y  R ˣ) ∥₁
    invertibleInBinarySum {x = x} {y = y} x+yInv =
      ∥_∥₁.map Σ→⊎ (local {n = 2} xy (subst (_∈ R ˣ) ∑xy≡x+y x+yInv))
      where
      xy : FinVec  R  2
      xy zero = x
      xy one = y
      ∑xy≡x+y : x + y  x + (y + 0r)
      ∑xy≡x+y = solve! R
      Σ→⊎ : Σ[ i  Fin 2 ] xy i  R ˣ  (x  R ˣ)  (y  R ˣ)
      Σ→⊎ (zero , xInv) = ⊎.inl xInv
      Σ→⊎ (one , yInv) = ⊎.inr yInv

    onLinearCombinations :
      {n : } 
      (α xs : FinVec  R  n) 
      1r  linearCombination R α xs 
      ∃[ i  Fin n ] xs i  R ˣ
    onLinearCombinations {n = n} α xs 1≡αxs = αxsHasInv→xsHasInv αxsHasInvertible
      where
      αxs : FinVec  R  n
      αxs i = α i · xs i
      αxsHasInvertible : ∃[ i  Fin n ] αxs i  R ˣ
      αxsHasInvertible = local αxs (subst (_∈ R ˣ) 1≡αxs RˣContainsOne)
      αxsHasInv→xsHasInv : ∃[ i  Fin n ] αxs i  R ˣ  ∃[ i  Fin n ] xs i  R ˣ
      αxsHasInv→xsHasInv =
        ∥_∥₁.rec
          isPropPropTrunc
          λ{(i , αxsi∈Rˣ)   i , snd (RˣMultDistributing (α i) (xs i) αxsi∈Rˣ) ∣₁}

    onFGIdeals :
      {n : } 
      (xs : FinVec  R  n) 
      1r  fst (generatedIdeal R xs) 
      ∃[ i  Fin n ] xs i  R ˣ
    onFGIdeals xs =
      ∥_∥₁.rec
        isPropPropTrunc
        λ{(α , 1≡αxs)  onLinearCombinations α xs 1≡αxs}

    private
      nonInvertibles :   R 
      nonInvertibles = λ x  (¬ (x  R ˣ)) , isProp→ isProp⊥

    open CommIdeal.isCommIdeal

    nonInvertiblesFormIdeal : CommIdeal.isCommIdeal R nonInvertibles
    +Closed nonInvertiblesFormIdeal {x = x} {y = y} xNonInv yNonInv x+yInv =
      ∥_∥₁.rec isProp⊥ (⊎.rec xNonInv yNonInv) (invertibleInBinarySum x+yInv)
    contains0 nonInvertiblesFormIdeal (x , 0x≡1) =
      1≢0 (sym 0x≡1  solve! R)
    ·Closed nonInvertiblesFormIdeal {x = x} r xNonInv rxInv =
      xNonInv (snd (RˣMultDistributing r x rxInv))


  -- Equivalent characterizations of local rings.
  module Characterizations where

    -- A characterization in terms of binary sums of ring elements.
    module BinSum where
      open CommRingStr (snd R)

      BinSum : Type 
      BinSum = (x y :  R )  (x + y  R ˣ)   (x  R ˣ)  (y  R ˣ) ∥₁

      Alternative : Type 
      Alternative = (¬ 1r  0r) × BinSum

      isPropAlternative : isProp Alternative
      isPropAlternative =
        isProp×
          (isProp→ isProp⊥)
          (isPropΠ3  _ _ _  isPropPropTrunc))

      isLocal→Alternative : isLocal  Alternative
      isLocal→Alternative local =
          1≢0
        , λ x y  invertibleInBinarySum
        where
        open Consequences local

      module _ ((1≢0 , binSum) : Alternative) where
        alternative→isLocal : isLocal
        alternative→isLocal {n = ℕ.zero} xs (0⁻¹ , 00⁻¹≡1) =
          ⊥.rec (1≢0 (sym 00⁻¹≡1  0x≡0 0⁻¹))
          where
          0x≡0 : (x :  R )  0r · x  0r
          0x≡0 _ = solve! R
        alternative→isLocal {n = ℕ.suc n} xxs x+∑xsInv =
          ∥_∥₁.rec
            isPropPropTrunc
            (⊎.rec
               xInv   zero , xInv ∣₁)
              (  ∥_∥₁.map (λ{(i , xsiInv)  (suc i) , xsiInv})
                alternative→isLocal xs))
            (binSum x ( xs) x+∑xsInv)
          where
          x :  R 
          x = xxs zero
          xs : FinVec  R  n
          xs = xxs  suc

      path : isLocal  Alternative
      path =
        hPropExt
          isPropIsLocal
          isPropAlternative
          isLocal→Alternative
          alternative→isLocal

    -- A characterization featuring ring elements of the form 1 - x.
    module OneMinus where
      open CommRingStr (snd R)

      OneMinus : Type 
      OneMinus = (x :  R )   (x  R ˣ)  (1r - x  R ˣ) ∥₁

      Alternative : Type 
      Alternative = (¬ 1r  0r) × OneMinus

      isPropAlternative : isProp Alternative
      isPropAlternative =
        isProp×
          (isProp→ isProp⊥)
          (isPropΠ  _  isPropPropTrunc))

      private
        binSum→OneMinus : BinSum.BinSum  OneMinus
        binSum→OneMinus binSum x =
          binSum x (1r - x) (subst (_∈ R ˣ) (solve! R) RˣContainsOne)
          where open Units R

        oneMinus→BinSum : OneMinus  BinSum.BinSum
        oneMinus→BinSum oneMinus x y (s⁻¹ , ss⁻¹≡1) =
          ∥_∥₁.map
            (⊎.map
              (fst  RˣMultDistributing x s⁻¹)
              (fst  RˣMultDistributing y s⁻¹  subst (_∈ R ˣ) 1-xs⁻¹≡ys⁻¹))
            (oneMinus (x · s⁻¹))
          where
          1-xs⁻¹≡ys⁻¹ : 1r - x · s⁻¹  y · s⁻¹
          1-xs⁻¹≡ys⁻¹ =
            (1r - x · s⁻¹)             ≡⟨ cong (_- _) (sym ss⁻¹≡1) 
            ((x + y) · s⁻¹ - x · s⁻¹)  ≡⟨ solve! R 
            (y · s⁻¹)                  
          open Units R

        pathFromBinSum : BinSum.Alternative  Alternative
        pathFromBinSum =
          hPropExt
            BinSum.isPropAlternative
            isPropAlternative
            (λ{ (1≢0 , binSum)  1≢0 , binSum→OneMinus binSum})
            (λ{ (1≢0 , oneMinus)  1≢0 , oneMinus→BinSum oneMinus})

      path : isLocal  Alternative
      path = BinSum.path  pathFromBinSum