module Data.Vec.Properties where
open import Algebra.FunctionProperties
open import Data.Empty using (⊥-elim)
open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ)
open import Data.Fin.Properties using (_+′_)
open import Data.List.Base as List using (List)
open import Data.List.Any using (here; there)
import Data.List.Membership.Propositional as List
open import Data.Nat
open import Data.Nat.Properties using (+-assoc; ≤-step)
open import Data.Product as Prod
  using (_×_; _,_; proj₁; proj₂; <_,_>; uncurry)
open import Data.Vec
open import Function
open import Function.Inverse using (_↔_; inverse)
open import Relation.Binary hiding (Decidable)
open import Relation.Binary.PropositionalEquality as P
  using (_≡_; _≢_; refl; _≗_)
open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary using (yes; no)
module _ {a} {A : Set a} {n} {x y : A} {xs ys : Vec A n} where
 ∷-injectiveˡ : x ∷ xs ≡ y ∷ ys → x ≡ y
 ∷-injectiveˡ refl = refl
 ∷-injectiveʳ : x ∷ xs ≡ y ∷ ys → xs ≡ ys
 ∷-injectiveʳ refl = refl
 ∷-injective : (x ∷ xs) ≡ (y ∷ ys) → x ≡ y × xs ≡ ys
 ∷-injective refl = refl , refl
module _ {a} {A : Set a} where
  []=-injective : ∀ {n} {xs : Vec A n} {i x y} →
                  xs [ i ]= x → xs [ i ]= y → x ≡ y
  []=-injective here          here          = refl
  []=-injective (there xsᵢ≡x) (there xsᵢ≡y) = []=-injective xsᵢ≡x xsᵢ≡y
  []=-irrelevance : ∀ {n} {xs : Vec A n} {i x} →
                    (p q : xs [ i ]= x) → p ≡ q
  []=-irrelevance here            here             = refl
  []=-irrelevance (there xs[i]=x) (there xs[i]=x') =
    P.cong there ([]=-irrelevance xs[i]=x xs[i]=x')
module _ {a} {A : Set a} where
  []=⇒lookup : ∀ {n} {x : A} {xs} {i : Fin n} →
               xs [ i ]= x → lookup i xs ≡ x
  []=⇒lookup here            = refl
  []=⇒lookup (there xs[i]=x) = []=⇒lookup xs[i]=x
  lookup⇒[]= : ∀ {n} (i : Fin n) {x : A} xs →
               lookup i xs ≡ x → xs [ i ]= x
  lookup⇒[]= zero    (_ ∷ _)  refl = here
  lookup⇒[]= (suc i) (_  ∷ xs) p    = there (lookup⇒[]= i xs p)
  []=↔lookup : ∀ {n i} {x} {xs : Vec A n} →
               xs [ i ]= x ↔ lookup i xs ≡ x
  []=↔lookup = inverse []=⇒lookup (lookup⇒[]= _ _)
     (λ _ → []=-irrelevance _ _) (λ _ → P.≡-irrelevance _ _)
module _ {a} {A : Set a} where
  []≔-idempotent : ∀ {n} (xs : Vec A n) (i : Fin n) {x₁ x₂ : A} →
                   (xs [ i ]≔ x₁) [ i ]≔ x₂ ≡ xs [ i ]≔ x₂
  []≔-idempotent []       ()
  []≔-idempotent (x ∷ xs) zero    = refl
  []≔-idempotent (x ∷ xs) (suc i) = P.cong (x ∷_) ([]≔-idempotent xs i)
  []≔-commutes : ∀ {n} (xs : Vec A n) (i j : Fin n) {x y : A} → i ≢ j →
                 (xs [ i ]≔ x) [ j ]≔ y ≡ (xs [ j ]≔ y) [ i ]≔ x
  []≔-commutes []       ()      ()      _
  []≔-commutes (x ∷ xs) zero    zero    0≢0 = ⊥-elim $ 0≢0 refl
  []≔-commutes (x ∷ xs) zero    (suc i) _   = refl
  []≔-commutes (x ∷ xs) (suc i) zero    _   = refl
  []≔-commutes (x ∷ xs) (suc i) (suc j) i≢j =
    P.cong (x ∷_) $ []≔-commutes xs i j (i≢j ∘ P.cong suc)
  []≔-updates : ∀ {n} (xs : Vec A n) (i : Fin n) {x : A} →
                (xs [ i ]≔ x) [ i ]= x
  []≔-updates []       ()
  []≔-updates (x ∷ xs) zero    = here
  []≔-updates (x ∷ xs) (suc i) = there ([]≔-updates xs i)
  []≔-minimal : ∀ {n} (xs : Vec A n) (i j : Fin n) {x y : A} → i ≢ j →
                xs [ i ]= x → (xs [ j ]≔ y) [ i ]= x
  []≔-minimal []       ()      ()      _   _
  []≔-minimal (x ∷ xs) .zero   zero    0≢0 here        = ⊥-elim (0≢0 refl)
  []≔-minimal (x ∷ xs) .zero   (suc j) _   here        = here
  []≔-minimal (x ∷ xs) (suc i) zero    _   (there loc) = there loc
  []≔-minimal (x ∷ xs) (suc i) (suc j) i≢j (there loc) =
    there ([]≔-minimal xs i j (i≢j ∘ P.cong suc) loc)
  []≔-lookup : ∀ {n} (xs : Vec A n) (i : Fin n) →
               xs [ i ]≔ lookup i xs ≡ xs
  []≔-lookup []       ()
  []≔-lookup (x ∷ xs) zero    = refl
  []≔-lookup (x ∷ xs) (suc i) = P.cong (_∷_ x) $ []≔-lookup xs i
  lookup∘update : ∀ {n} (i : Fin n) (xs : Vec A n) x →
                  lookup i (xs [ i ]≔ x) ≡ x
  lookup∘update zero    (_ ∷ xs) x = refl
  lookup∘update (suc i) (_ ∷ xs) x = lookup∘update i xs x
  lookup∘update′ : ∀ {n} {i j : Fin n} → i ≢ j → ∀ (xs : Vec A n) y →
                   lookup i (xs [ j ]≔ y) ≡ lookup i xs
  lookup∘update′ {i = zero}  {zero}  i≢j      xs  y = ⊥-elim (i≢j refl)
  lookup∘update′ {i = zero}  {suc j} i≢j (x ∷ xs) y = refl
  lookup∘update′ {i = suc i} {zero}  i≢j (x ∷ xs) y = refl
  lookup∘update′ {i = suc i} {suc j} i≢j (x ∷ xs) y =
    lookup∘update′ (i≢j ∘ P.cong suc) xs y
map-id : ∀ {a n} {A : Set a} → map {n = n} {A} id ≗ id
map-id []       = refl
map-id (x ∷ xs) = P.cong (x ∷_) (map-id xs)
map-cong : ∀ {a b n} {A : Set a} {B : Set b} {f g : A → B} →
           f ≗ g → map {n = n} f ≗ map g
map-cong f≗g []       = refl
map-cong f≗g (x ∷ xs) = P.cong₂ _∷_ (f≗g x) (map-cong f≗g xs)
map-∘ : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c}
        (f : B → C) (g : A → B) →
        map {n = n} (f ∘ g) ≗ map f ∘ map g
map-∘ f g []       = refl
map-∘ f g (x ∷ xs) = P.cong (f (g x) ∷_) (map-∘ f g xs)
lookup-map : ∀ {a b n} {A : Set a} {B : Set b}
             (i : Fin n) (f : A → B) (xs : Vec A n) →
             lookup i (map f xs) ≡ f (lookup i xs)
lookup-map zero    f (x ∷ xs) = refl
lookup-map (suc i) f (x ∷ xs) = lookup-map i f xs
map-[]≔ : ∀ {n a b} {A : Set a} {B : Set b}
          (f : A → B) (xs : Vec A n) (i : Fin n) {x : A} →
          map f (xs [ i ]≔ x) ≡ map f xs [ i ]≔ f x
map-[]≔ f []       ()
map-[]≔ f (x ∷ xs) zero    = refl
map-[]≔ f (x ∷ xs) (suc i) = P.cong (_ ∷_) $ map-[]≔ f xs i
module _ {a} {A : Set a} {m} {ys ys' : Vec A m} where
  ++-injectiveˡ : ∀ {n} (xs xs' : Vec A n) →
                  xs ++ ys ≡ xs' ++ ys' → xs ≡ xs'
  ++-injectiveˡ []       []         _  = refl
  ++-injectiveˡ (x ∷ xs) (x' ∷ xs') eq =
    P.cong₂ _∷_ (∷-injectiveˡ eq) (++-injectiveˡ _ _ (∷-injectiveʳ eq))
  ++-injectiveʳ : ∀ {n} (xs xs' : Vec A n) →
                  xs ++ ys ≡ xs' ++ ys' → ys ≡ ys'
  ++-injectiveʳ []       []         eq = eq
  ++-injectiveʳ (x ∷ xs) (x' ∷ xs') eq =
    ++-injectiveʳ xs xs' (∷-injectiveʳ eq)
  ++-injective  : ∀ {n} (xs xs' : Vec A n) →
                  xs ++ ys ≡ xs' ++ ys' → xs ≡ xs' × ys ≡ ys'
  ++-injective xs xs' eq =
    (++-injectiveˡ xs xs' eq , ++-injectiveʳ xs xs' eq)
module _ {a} {A : Set a} where
  ++-assoc : ∀ {m n k} (xs : Vec A m) (ys : Vec A n) (zs : Vec A k) →
             (xs ++ ys) ++ zs ≅ xs ++ (ys ++ zs)
  ++-assoc         []       ys zs = refl
  ++-assoc {suc m} (x ∷ xs) ys zs =
    H.icong (Vec A) (+-assoc m _ _) (x ∷_) (++-assoc xs ys zs)
  lookup-++-< : ∀ {m n} (xs : Vec A m) (ys : Vec A n) →
                ∀ i (i<m : toℕ i < m) →
                lookup i (xs ++ ys) ≡ lookup (Fin.fromℕ≤ i<m) xs
  lookup-++-< []       ys i       ()
  lookup-++-< (x ∷ xs) ys zero    (s≤s z≤n)       = refl
  lookup-++-< (x ∷ xs) ys (suc i) (s≤s (s≤s i<m)) =
    lookup-++-< xs ys i (s≤s i<m)
  lookup-++-≥ : ∀ {m n} (xs : Vec A m) (ys : Vec A n) →
                ∀ i (i≥m : toℕ i ≥ m) →
                lookup i (xs ++ ys) ≡ lookup (Fin.reduce≥ i i≥m) ys
  lookup-++-≥ []       ys i       i≥m       = refl
  lookup-++-≥ (x ∷ xs) ys zero    ()
  lookup-++-≥ (x ∷ xs) ys (suc i) (s≤s i≥m) = lookup-++-≥ xs ys i i≥m
  lookup-++-inject+ : ∀ {m n} (xs : Vec A m) (ys : Vec A n) i →
                      lookup (Fin.inject+ n i) (xs ++ ys) ≡ lookup i xs
  lookup-++-inject+ []       ys ()
  lookup-++-inject+ (x ∷ xs) ys zero    = refl
  lookup-++-inject+ (x ∷ xs) ys (suc i) = lookup-++-inject+ xs ys i
  lookup-++-+′ : ∀ {m n} (xs : Vec A m) (ys : Vec A n) i →
                 lookup (fromℕ m +′ i) (xs ++ ys) ≡ lookup i ys
  lookup-++-+′ []       ys       zero    = refl
  lookup-++-+′ []       (y ∷ xs) (suc i) = lookup-++-+′ [] xs i
  lookup-++-+′ (x ∷ xs) ys       i       = lookup-++-+′ xs ys i
  []≔-++-inject+ : ∀ {m n x} (xs : Vec A m) (ys : Vec A n) i →
                   (xs ++ ys) [ Fin.inject+ n i ]≔ x ≡ (xs [ i ]≔ x) ++ ys
  []≔-++-inject+ []       ys ()
  []≔-++-inject+ (x ∷ xs) ys zero    = refl
  []≔-++-inject+ (x ∷ xs) ys (suc i) =
    P.cong (x ∷_) $ []≔-++-inject+ xs ys i
module _ {a} {A : Set a} {f : A → A → A} where
  zipWith-assoc : Associative _≡_ f → ∀ {n} →
                  Associative _≡_ (zipWith {n = n} f)
  zipWith-assoc assoc []       []       []       = refl
  zipWith-assoc assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) =
    P.cong₂ _∷_ (assoc x y z) (zipWith-assoc assoc xs ys zs)
  zipWith-idem : Idempotent _≡_ f → ∀ {n} →
                 Idempotent _≡_ (zipWith {n = n} f)
  zipWith-idem idem []       = refl
  zipWith-idem idem (x ∷ xs) =
    P.cong₂ _∷_ (idem x) (zipWith-idem idem xs)
  zipWith-identityˡ : ∀ {1#} → LeftIdentity _≡_ 1# f → ∀ {n} →
                      LeftIdentity _≡_ (replicate 1#) (zipWith {n = n} f)
  zipWith-identityˡ idˡ []       = refl
  zipWith-identityˡ idˡ (x ∷ xs) =
    P.cong₂ _∷_ (idˡ x) (zipWith-identityˡ idˡ xs)
  zipWith-identityʳ : ∀ {1#} → RightIdentity _≡_ 1# f → ∀ {n} →
                      RightIdentity _≡_ (replicate 1#) (zipWith {n = n} f)
  zipWith-identityʳ idʳ []       = refl
  zipWith-identityʳ idʳ (x ∷ xs) =
    P.cong₂ _∷_ (idʳ x) (zipWith-identityʳ idʳ xs)
  zipWith-zeroˡ : ∀ {0#} → LeftZero _≡_ 0# f → ∀ {n} →
                  LeftZero _≡_ (replicate 0#) (zipWith {n = n} f)
  zipWith-zeroˡ zeˡ []       = refl
  zipWith-zeroˡ zeˡ (x ∷ xs) =
    P.cong₂ _∷_ (zeˡ x) (zipWith-zeroˡ zeˡ xs)
  zipWith-zeroʳ : ∀ {0#} → RightZero _≡_ 0# f → ∀ {n} →
                  RightZero _≡_ (replicate 0#) (zipWith {n = n} f)
  zipWith-zeroʳ zeʳ []       = refl
  zipWith-zeroʳ zeʳ (x ∷ xs) =
    P.cong₂ _∷_ (zeʳ x) (zipWith-zeroʳ zeʳ xs)
  zipWith-inverseˡ : ∀ {⁻¹ 0#} → LeftInverse _≡_ 0# ⁻¹ f → ∀ {n} →
                     LeftInverse _≡_ (replicate {n = n} 0#) (map ⁻¹) (zipWith f)
  zipWith-inverseˡ invˡ []       = refl
  zipWith-inverseˡ invˡ (x ∷ xs) =
    P.cong₂ _∷_ (invˡ x) (zipWith-inverseˡ invˡ xs)
  zipWith-inverseʳ : ∀ {⁻¹ 0#} → RightInverse _≡_ 0# ⁻¹ f → ∀ {n} →
                     RightInverse _≡_ (replicate {n = n} 0#) (map ⁻¹) (zipWith f)
  zipWith-inverseʳ invʳ []       = refl
  zipWith-inverseʳ invʳ (x ∷ xs) =
    P.cong₂ _∷_ (invʳ x) (zipWith-inverseʳ invʳ xs)
  zipWith-distribˡ : ∀ {g} → _DistributesOverˡ_ _≡_ f g → ∀ {n} →
                     _DistributesOverˡ_ _≡_ (zipWith {n = n} f) (zipWith g)
  zipWith-distribˡ distribˡ []        []      []       = refl
  zipWith-distribˡ distribˡ (x ∷ xs) (y ∷ ys) (z ∷ zs) =
    P.cong₂ _∷_ (distribˡ x y z) (zipWith-distribˡ distribˡ xs ys zs)
  zipWith-distribʳ : ∀ {g} → _DistributesOverʳ_ _≡_ f g → ∀ {n} →
                     _DistributesOverʳ_ _≡_ (zipWith {n = n} f) (zipWith g)
  zipWith-distribʳ distribʳ []        []      []       = refl
  zipWith-distribʳ distribʳ (x ∷ xs) (y ∷ ys) (z ∷ zs) =
    P.cong₂ _∷_ (distribʳ x y z) (zipWith-distribʳ distribʳ xs ys zs)
  zipWith-absorbs : ∀ {g} → _Absorbs_ _≡_ f g → ∀ {n} →
                   _Absorbs_ _≡_ (zipWith {n = n} f) (zipWith g)
  zipWith-absorbs abs []       []       = refl
  zipWith-absorbs abs (x ∷ xs) (y ∷ ys) =
    P.cong₂ _∷_ (abs x y) (zipWith-absorbs abs xs ys)
module _ {a b} {A : Set a} {B : Set b} {f : A → A → B} where
  zipWith-comm : (∀ x y → f x y ≡ f y x) → ∀ {n}
                 (xs ys : Vec A n) → zipWith f xs ys ≡ zipWith f ys xs
  zipWith-comm comm []       []       = refl
  zipWith-comm comm (x ∷ xs) (y ∷ ys) =
    P.cong₂ _∷_ (comm x y) (zipWith-comm comm xs ys)
module _ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} where
  zipWith-map₁ : ∀ {n} (_⊕_ : B → C → D) (f : A → B)
                 (xs : Vec A n) (ys : Vec C n) →
                 zipWith _⊕_ (map f xs) ys ≡ zipWith (λ x y → f x ⊕ y) xs ys
  zipWith-map₁ _⊕_ f []       []       = refl
  zipWith-map₁ _⊕_ f (x ∷ xs) (y ∷ ys) =
    P.cong (f x ⊕ y ∷_) (zipWith-map₁ _⊕_ f xs ys)
  zipWith-map₂ : ∀ {n} (_⊕_ : A → C → D) (f : B → C)
                 (xs : Vec A n) (ys : Vec B n) →
                 zipWith _⊕_ xs (map f ys) ≡ zipWith (λ x y → x ⊕ f y) xs ys
  zipWith-map₂ _⊕_ f []       []       = refl
  zipWith-map₂ _⊕_ f (x ∷ xs) (y ∷ ys) =
    P.cong (x ⊕ f y ∷_) (zipWith-map₂ _⊕_ f xs ys)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
  lookup-zipWith : ∀ (f : A → B → C) {n} (i : Fin n) xs ys →
                   lookup i (zipWith f xs ys) ≡ f (lookup i xs) (lookup i ys)
  lookup-zipWith _ zero    (x ∷ _)  (y ∷ _)   = refl
  lookup-zipWith _ (suc i) (_ ∷ xs) (_ ∷ ys)  = lookup-zipWith _ i xs ys
module _ {a b} {A : Set a} {B : Set b} where
  lookup-zip : ∀ {n} (i : Fin n) (xs : Vec A n) (ys : Vec B n) →
               lookup i (zip xs ys) ≡ (lookup i xs , lookup i ys)
  lookup-zip = lookup-zipWith _,_
  
  map-proj₁-zip : ∀ {n} (xs : Vec A n) (ys : Vec B n) →
                  map proj₁ (zip xs ys) ≡ xs
  map-proj₁-zip []       []       = refl
  map-proj₁-zip (x ∷ xs) (y ∷ ys) = P.cong (x ∷_) (map-proj₁-zip xs ys)
  map-proj₂-zip : ∀ {n} (xs : Vec A n) (ys : Vec B n) →
                  map proj₂ (zip xs ys) ≡ ys
  map-proj₂-zip []       []       = refl
  map-proj₂-zip (x ∷ xs) (y ∷ ys) = P.cong (y ∷_) (map-proj₂-zip xs ys)
map-<,>-zip : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c}
              (f : A → B) (g : A → C) (xs : Vec A n) →
              map < f , g > xs ≡ zip (map f xs) (map g xs)
map-<,>-zip f g []       = P.refl
map-<,>-zip f g (x ∷ xs) = P.cong (_ ∷_) (map-<,>-zip f g xs)
map-zip : ∀ {a b c d n} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
          (f : A → B) (g : C → D) (xs : Vec A n) (ys : Vec C n) →
          map (Prod.map f g) (zip xs ys) ≡ zip (map f xs) (map g ys)
map-zip f g []       []       = refl
map-zip f g (x ∷ xs) (y ∷ ys) = P.cong (_ ∷_) (map-zip f g xs ys)
module _ {a b} {A : Set a} {B : Set b} where
  lookup-unzip : ∀ {n} (i : Fin n) (xys : Vec (A × B) n) →
                 let xs , ys = unzip xys
                 in (lookup i xs , lookup i ys) ≡ lookup i xys
  lookup-unzip ()      []
  lookup-unzip zero    ((x , y) ∷ xys) = refl
  lookup-unzip (suc i) ((x , y) ∷ xys) = lookup-unzip i xys
  map-unzip : ∀ {c d n} {C : Set c} {D : Set d}
              (f : A → B) (g : C → D) (xys : Vec (A × C) n) →
              let xs , ys = unzip xys
              in (map f xs , map g ys) ≡ unzip (map (Prod.map f g) xys)
  map-unzip f g []              = refl
  map-unzip f g ((x , y) ∷ xys) =
    P.cong (Prod.map (f x ∷_) (g y ∷_)) (map-unzip f g xys)
  
  unzip∘zip : ∀ {n} (xs : Vec A n) (ys : Vec B n) →
              unzip (zip xs ys) ≡ (xs , ys)
  unzip∘zip [] []             = refl
  unzip∘zip (x ∷ xs) (y ∷ ys) =
    P.cong (Prod.map (x ∷_) (y ∷_)) (unzip∘zip xs ys)
  zip∘unzip : ∀ {n} (xys : Vec (A × B) n) →
              uncurry zip (unzip xys) ≡ xys
  zip∘unzip []              = refl
  zip∘unzip ((x , y) ∷ xys) = P.cong ((x , y) ∷_) (zip∘unzip xys)
  ×v↔v× : ∀ {n} → (Vec A n × Vec B n) ↔ Vec (A × B) n
  ×v↔v× = inverse (uncurry zip) unzip (uncurry unzip∘zip) zip∘unzip
module _ {a b} {A : Set a} {B : Set b} where
  lookup-⊛ : ∀ {n} i (fs : Vec (A → B) n) (xs : Vec A n) →
             lookup i (fs ⊛ xs) ≡ (lookup i fs $ lookup i xs)
  lookup-⊛ zero    (f ∷ fs) (x ∷ xs) = refl
  lookup-⊛ (suc i) (f ∷ fs) (x ∷ xs) = lookup-⊛ i fs xs
  map-is-⊛ : ∀ {n} (f : A → B) (xs : Vec A n) →
             map f xs ≡ (replicate f ⊛ xs)
  map-is-⊛ f []       = refl
  map-is-⊛ f (x ∷ xs) = P.cong (_ ∷_) (map-is-⊛ f xs)
  ⊛-is-zipWith : ∀ {n} (fs : Vec (A → B) n) (xs : Vec A n) →
                 (fs ⊛ xs) ≡ zipWith _$_ fs xs
  ⊛-is-zipWith []       []       = refl
  ⊛-is-zipWith (f ∷ fs) (x ∷ xs) = P.cong (f x ∷_) (⊛-is-zipWith fs xs)
  zipWith-is-⊛ : ∀ {c} {C : Set c} {n} (f : A → B → C) →
                 (xs : Vec A n) (ys : Vec B n) →
                 zipWith f xs ys ≡ (replicate f ⊛ xs ⊛ ys)
  zipWith-is-⊛ f []       []       = refl
  zipWith-is-⊛ f (x ∷ xs) (y ∷ ys) = P.cong (_ ∷_) (zipWith-is-⊛ f xs ys)
foldr-cong : ∀ {a b} {A : Set a}
             {B : ℕ → Set b} {f : ∀ {n} → A → B n → B (suc n)} {d}
             {C : ℕ → Set b} {g : ∀ {n} → A → C n → C (suc n)} {e} →
             (∀ {n x} {y : B n} {z : C n} → y ≅ z → f x y ≅ g x z) →
             d ≅ e → ∀ {n} (xs : Vec A n) →
             foldr B f d xs ≅ foldr C g e xs
foldr-cong _   d≅e []       = d≅e
foldr-cong f≅g d≅e (x ∷ xs) = f≅g (foldr-cong f≅g d≅e xs)
foldr-universal : ∀ {a b} {A : Set a} (B : ℕ → Set b)
                  (f : ∀ {n} → A → B n → B (suc n)) {e}
                  (h : ∀ {n} → Vec A n → B n) →
                  h [] ≡ e →
                  (∀ {n} x → h ∘ (x ∷_) ≗ f {n} x ∘ h) →
                  ∀ {n} → h ≗ foldr B {n} f e
foldr-universal B f {_} h base step []       = base
foldr-universal B f {e} h base step (x ∷ xs) = begin
  h (x ∷ xs)
    ≡⟨ step x xs ⟩
  f x (h xs)
    ≡⟨ P.cong (f x) (foldr-universal B f h base step xs) ⟩
  f x (foldr B f e xs)
    ∎
  where open P.≡-Reasoning
foldr-fusion : ∀ {a b c} {A : Set a}
               {B : ℕ → Set b} {f : ∀ {n} → A → B n → B (suc n)} e
               {C : ℕ → Set c} {g : ∀ {n} → A → C n → C (suc n)}
               (h : ∀ {n} → B n → C n) →
               (∀ {n} x → h ∘ f {n} x ≗ g x ∘ h) →
               ∀ {n} → h ∘ foldr B {n} f e ≗ foldr C g (h e)
foldr-fusion {B = B} {f} e {C} h fuse =
  foldr-universal C _ _ refl (λ x xs → fuse x (foldr B f e xs))
idIsFold : ∀ {a n} {A : Set a} → id ≗ foldr (Vec A) {n} _∷_ []
idIsFold = foldr-universal _ _ id refl (λ _ _ → refl)
foldl-cong : ∀ {a b} {A : Set a}
             {B : ℕ → Set b} {f : ∀ {n} → B n → A → B (suc n)} {d}
             {C : ℕ → Set b} {g : ∀ {n} → C n → A → C (suc n)} {e} →
             (∀ {n x} {y : B n} {z : C n} → y ≅ z → f y x ≅ g z x) →
             d ≅ e → ∀ {n} (xs : Vec A n) →
             foldl B f d xs ≅ foldl C g e xs
foldl-cong _   d≅e []       = d≅e
foldl-cong f≅g d≅e (x ∷ xs) = foldl-cong f≅g (f≅g d≅e) xs
sum-++-commute : ∀ {m n} (xs : Vec ℕ m) {ys : Vec ℕ n} →
                 sum (xs ++ ys) ≡ sum xs + sum ys
sum-++-commute []       {_}  = refl
sum-++-commute (x ∷ xs) {ys} = begin
  x + sum (xs ++ ys)     ≡⟨ P.cong (x +_) (sum-++-commute xs) ⟩
  x + (sum xs + sum ys)  ≡⟨ P.sym (+-assoc x (sum xs) (sum ys)) ⟩
  sum (x ∷ xs) + sum ys  ∎
  where open P.≡-Reasoning
lookup-replicate : ∀ {a n} {A : Set a} (i : Fin n) (x : A) →
                   lookup i (replicate x) ≡ x
lookup-replicate zero    = λ _ → refl
lookup-replicate (suc i) = lookup-replicate i
map-replicate :  ∀ {a b} {A : Set a} {B : Set b} (f : A → B) (x : A) →
                 ∀ n → map f (replicate x) ≡ replicate {n = n} (f x)
map-replicate f x zero = refl
map-replicate f x (suc n) = P.cong (f x ∷_) (map-replicate f x n)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
  zipWith-replicate₁ : ∀ {n} (_⊕_ : A → B → C) (x : A) (ys : Vec B n) →
                     zipWith _⊕_ (replicate x) ys ≡ map (x ⊕_) ys
  zipWith-replicate₁ _⊕_ x []       = refl
  zipWith-replicate₁ _⊕_ x (y ∷ ys) =
    P.cong (x ⊕ y ∷_) (zipWith-replicate₁ _⊕_ x ys)
  zipWith-replicate₂ : ∀ {n} (_⊕_ : A → B → C) (xs : Vec A n) (y : B) →
                     zipWith _⊕_ xs (replicate y) ≡ map (_⊕ y) xs
  zipWith-replicate₂ _⊕_ []       y = refl
  zipWith-replicate₂ _⊕_ (x ∷ xs) y =
    P.cong (x ⊕ y ∷_) (zipWith-replicate₂ _⊕_ xs y)
lookup∘tabulate : ∀ {a n} {A : Set a} (f : Fin n → A) (i : Fin n) →
                  lookup i (tabulate f) ≡ f i
lookup∘tabulate f zero    = refl
lookup∘tabulate f (suc i) = lookup∘tabulate (f ∘ suc) i
tabulate∘lookup : ∀ {a n} {A : Set a} (xs : Vec A n) →
                  tabulate (flip lookup xs) ≡ xs
tabulate∘lookup []       = refl
tabulate∘lookup (x ∷ xs) = P.cong (x ∷_) (tabulate∘lookup xs)
tabulate-∘ : ∀ {n a b} {A : Set a} {B : Set b}
             (f : A → B) (g : Fin n → A) →
             tabulate (f ∘ g) ≡ map f (tabulate g)
tabulate-∘ {zero}  f g = refl
tabulate-∘ {suc n} f g = P.cong (f (g zero) ∷_) (tabulate-∘ f (g ∘ suc))
tabulate-cong : ∀ {n a} {A : Set a} {f g : Fin n → A} → f ≗ g → tabulate f ≡ tabulate g
tabulate-cong {zero} p = refl
tabulate-cong {suc n} p = P.cong₂ _∷_ (p zero) (tabulate-cong (p ∘ suc))
lookup-allFin : ∀ {n} (i : Fin n) → lookup i (allFin n) ≡ i
lookup-allFin = lookup∘tabulate id
allFin-map : ∀ n → allFin (suc n) ≡ zero ∷ map suc (allFin n)
allFin-map n = P.cong (zero ∷_) $ tabulate-∘ suc id
tabulate-allFin : ∀ {n a} {A : Set a} (f : Fin n → A) →
                  tabulate f ≡ map f (allFin n)
tabulate-allFin f = tabulate-∘ f id
map-lookup-allFin : ∀ {a} {A : Set a} {n} (xs : Vec A n) →
                    map (λ x → lookup x xs) (allFin n) ≡ xs
map-lookup-allFin {n = n} xs = begin
  map (λ x → lookup x xs) (allFin n) ≡⟨ P.sym $ tabulate-∘ (λ x → lookup x xs) id ⟩
  tabulate (λ x → lookup x xs)       ≡⟨ tabulate∘lookup xs ⟩
  xs                                 ∎
  where open P.≡-Reasoning
module _ {a p} {A : Set a} {P : Pred A p} (P? : Decidable P) where
  count≤n : ∀ {n} (xs : Vec A n) → count P? xs ≤ n
  count≤n []       = z≤n
  count≤n (x ∷ xs) with P? x
  ... | yes _ = s≤s (count≤n xs)
  ... | no  _ = ≤-step (count≤n xs)
module _ {a} {A : Set a} where
  insert-lookup : ∀ {n} (i : Fin (suc n)) (x : A)
                  (xs : Vec A n) → lookup i (insert i x xs) ≡ x
  insert-lookup zero x xs = refl
  insert-lookup (suc ()) x []
  insert-lookup (suc i) x (y ∷ xs) = insert-lookup i x xs
  insert-punchIn : ∀ {n} (i : Fin (suc n)) (x : A) (xs : Vec A n)
                   (j : Fin n) →
                   lookup (Fin.punchIn i j) (insert i x xs) ≡ lookup j xs
  insert-punchIn zero x xs j = refl
  insert-punchIn (suc ()) x [] j
  insert-punchIn (suc i) x (y ∷ xs) zero = refl
  insert-punchIn (suc i) x (y ∷ xs) (suc j) = insert-punchIn i x xs j
  remove-punchOut : ∀ {n} (xs : Vec A (suc n))
                    {i : Fin (suc n)} {j : Fin (suc n)} (i≢j : i ≢ j) →
                    lookup (Fin.punchOut i≢j) (remove i xs) ≡ lookup j xs
  remove-punchOut (x ∷ xs) {zero} {zero} i≢j = ⊥-elim (i≢j refl)
  remove-punchOut (x ∷ xs) {zero} {suc j} i≢j = refl
  remove-punchOut (x ∷ []) {suc ()} {j} i≢j
  remove-punchOut (x ∷ y ∷ xs) {suc i} {zero} i≢j = refl
  remove-punchOut (x ∷ y ∷ xs) {suc i} {suc j} i≢j =
    remove-punchOut (y ∷ xs) (i≢j ∘ P.cong suc)
  remove-insert : ∀ {n} (i : Fin (suc n)) (x : A) (xs : Vec A n) →
                  remove i (insert i x xs) ≡ xs
  remove-insert zero x xs = refl
  remove-insert (suc ()) x []
  remove-insert (suc zero) x (y ∷ xs) = refl
  remove-insert (suc (suc ())) x (y ∷ [])
  remove-insert (suc (suc i)) x (y ∷ z ∷ xs) =
    P.cong (y ∷_) (remove-insert (suc i) x (z ∷ xs))
  insert-remove : ∀ {n} (i : Fin (suc n)) (xs : Vec A (suc n)) →
                  insert i (lookup i xs) (remove i xs) ≡ xs
  insert-remove zero (x ∷ xs) = refl
  insert-remove (suc ()) (x ∷ [])
  insert-remove (suc i) (x ∷ y ∷ xs) =
    P.cong (x ∷_) (insert-remove i (y ∷ xs))
module _ {a} {A : Set a} where
  toList∘fromList : (xs : List A) → toList (fromList xs) ≡ xs
  toList∘fromList List.[]       = refl
  toList∘fromList (x List.∷ xs) = P.cong (x List.∷_) (toList∘fromList xs)
proof-irrelevance-[]= = []=-irrelevance
{-# WARNING_ON_USAGE proof-irrelevance-[]=
"Warning: proof-irrelevance-[]= was deprecated in v0.15.
Please use []=-irrelevance instead."
#-}