module Data.Vec where
open import Data.Nat
open import Data.Fin using (Fin; zero; suc)
open import Data.List.Base as List using (List)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_)
open import Data.These as These using (These; this; that; these)
open import Function
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary using (yes; no)
open import Relation.Unary using (Pred; Decidable)
infixr 5 _∷_
data Vec {a} (A : Set a) : ℕ → Set a where
  []  : Vec A zero
  _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
infix 4 _[_]=_
data _[_]=_ {a} {A : Set a} :
            {n : ℕ} → Vec A n → Fin n → A → Set a where
  here  : ∀ {n}     {x}   {xs : Vec A n} → x ∷ xs [ zero ]= x
  there : ∀ {n} {i} {x y} {xs : Vec A n}
          (xs[i]=x : xs [ i ]= x) → y ∷ xs [ suc i ]= x
head : ∀ {a n} {A : Set a} → Vec A (1 + n) → A
head (x ∷ xs) = x
tail : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n
tail (x ∷ xs) = xs
lookup : ∀ {a n} {A : Set a} → Fin n → Vec A n → A
lookup zero    (x ∷ xs) = x
lookup (suc i) (x ∷ xs) = lookup i xs
insert : ∀ {a n} {A : Set a} → Fin (suc n) → A → Vec A n → Vec A (suc n)
insert zero     x xs       = x ∷ xs
insert (suc ()) x []
insert (suc i)  x (y ∷ xs) = y ∷ insert i x xs
remove : ∀ {a n} {A : Set a} → Fin (suc n) → Vec A (suc n) → Vec A n
remove zero     (_ ∷ xs)     = xs
remove (suc ()) (x ∷ [])
remove (suc i)  (x ∷ y ∷ xs) = x ∷ remove i (y ∷ xs)
infixl 6 _[_]≔_
_[_]≔_ : ∀ {a n} {A : Set a} → Vec A n → Fin n → A → Vec A n
(x ∷ xs) [ zero  ]≔ y = y ∷ xs
(x ∷ xs) [ suc i ]≔ y = x ∷ xs [ i ]≔ y
map : ∀ {a b n} {A : Set a} {B : Set b} →
      (A → B) → Vec A n → Vec B n
map f []       = []
map f (x ∷ xs) = f x ∷ map f xs
infixr 5 _++_
_++_ : ∀ {a m n} {A : Set a} → Vec A m → Vec A n → Vec A (m + n)
[]       ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
concat : ∀ {a m n} {A : Set a} →
         Vec (Vec A m) n → Vec A (n * m)
concat []         = []
concat (xs ∷ xss) = xs ++ concat xss
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
  alignWith : ∀ {m n} → (These A B → C) → Vec A m → Vec B n → Vec C (m ⊔ n)
  alignWith f []         bs       = map (f ∘′ that) bs
  alignWith f as@(_ ∷ _) []       = map (f ∘′ this) as
  alignWith f (a ∷ as)   (b ∷ bs) = f (these a b) ∷ alignWith f as bs
  zipWith : ∀ {n} → (A → B → C) → Vec A n → Vec B n → Vec C n
  zipWith f []       []       = []
  zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys
  unzipWith : ∀ {n} → (A → B × C) → Vec A n → Vec B n × Vec C n
  unzipWith f []       = [] , []
  unzipWith f (a ∷ as) = Prod.zip _∷_ _∷_ (f a) (unzipWith f as)
module _ {a b} {A : Set a} {B : Set b} where
  align : ∀ {m n} → Vec A m → Vec B n → Vec (These A B) (m ⊔ n)
  align = alignWith id
  zip : ∀ {n} → Vec A n → Vec B n → Vec (A × B) n
  zip = zipWith _,_
  unzip : ∀ {n} → Vec (A × B) n → Vec A n × Vec B n
  unzip = unzipWith id
infixr 5 _⋎_
_⋎_ : ∀ {a m n} {A : Set a} →
      Vec A m → Vec A n → Vec A (m +⋎ n)
[]       ⋎ ys = ys
(x ∷ xs) ⋎ ys = x ∷ (ys ⋎ xs)
infixl 4 _⊛_
_⊛_ : ∀ {a b n} {A : Set a} {B : Set b} →
      Vec (A → B) n → Vec A n → Vec B n
[]       ⊛ _        = []
(f ∷ fs) ⊛ (x ∷ xs) = f x ∷ (fs ⊛ xs)
infixl 1 _>>=_
_>>=_ : ∀ {a b m n} {A : Set a} {B : Set b} →
        Vec A m → (A → Vec B n) → Vec B (m * n)
xs >>= f = concat (map f xs)
infixl 4 _⊛*_
_⊛*_ : ∀ {a b m n} {A : Set a} {B : Set b} →
       Vec (A → B) m → Vec A n → Vec B (m * n)
fs ⊛* xs = fs >>= λ f → map f xs
allPairs : ∀ {a b m n} {A : Set a} {B : Set b} →
           Vec A m → Vec B n → Vec (A × B) (m * n)
allPairs xs ys = map _,_ xs ⊛* ys
foldr : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
        (∀ {n} → A → B n → B (suc n)) →
        B zero →
        Vec A m → B m
foldr b _⊕_ n []       = n
foldr b _⊕_ n (x ∷ xs) = x ⊕ foldr b _⊕_ n xs
foldr₁ : ∀ {a} {A : Set a} {m} →
         (A → A → A) → Vec A (suc m) → A
foldr₁ _⊕_ (x ∷ [])     = x
foldr₁ _⊕_ (x ∷ y ∷ ys) = x ⊕ foldr₁ _⊕_ (y ∷ ys)
foldl : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
        (∀ {n} → B n → A → B (suc n)) →
        B zero →
        Vec A m → B m
foldl b _⊕_ n []       = n
foldl b _⊕_ n (x ∷ xs) = foldl (λ n → b (suc n)) _⊕_ (n ⊕ x) xs
foldl₁ : ∀ {a} {A : Set a} {m} →
         (A → A → A) → Vec A (suc m) → A
foldl₁ _⊕_ (x ∷ xs) = foldl _ _⊕_ x xs
sum : ∀ {n} → Vec ℕ n → ℕ
sum = foldr _ _+_ 0
count : ∀ {a p} {A : Set a} {P : Pred A p} → Decidable P →
        ∀ {n} → Vec A n → ℕ
count P? []       = zero
count P? (x ∷ xs) with P? x
... | yes _ = suc (count P? xs)
... | no  _ = count P? xs
[_] : ∀ {a} {A : Set a} → A → Vec A 1
[ x ] = x ∷ []
replicate : ∀ {a n} {A : Set a} → A → Vec A n
replicate {n = zero}  x = []
replicate {n = suc n} x = x ∷ replicate x
tabulate : ∀ {n a} {A : Set a} → (Fin n → A) → Vec A n
tabulate {zero}  f = []
tabulate {suc n} f = f zero ∷ tabulate (f ∘ suc)
allFin : ∀ n → Vec (Fin n) n
allFin _ = tabulate id
splitAt : ∀ {a} {A : Set a} m {n} (xs : Vec A (m + n)) →
          ∃₂ λ (ys : Vec A m) (zs : Vec A n) → xs ≡ ys ++ zs
splitAt zero    xs                = ([] , xs , refl)
splitAt (suc m) (x ∷ xs)          with splitAt m xs
splitAt (suc m) (x ∷ .(ys ++ zs)) | (ys , zs , refl) =
  ((x ∷ ys) , zs , refl)
take : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A m
take m xs          with splitAt m xs
take m .(ys ++ zs) | (ys , zs , refl) = ys
drop : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A n
drop m xs          with splitAt m xs
drop m .(ys ++ zs) | (ys , zs , refl) = zs
group : ∀ {a} {A : Set a} n k (xs : Vec A (n * k)) →
        ∃ λ (xss : Vec (Vec A k) n) → xs ≡ concat xss
group zero    k []                  = ([] , refl)
group (suc n) k xs                  with splitAt k xs
group (suc n) k .(ys ++ zs)         | (ys , zs , refl) with group n k zs
group (suc n) k .(ys ++ concat zss) | (ys , ._ , refl) | (zss , refl) =
  ((ys ∷ zss) , refl)
split : ∀ {a n} {A : Set a} → Vec A n → Vec A ⌈ n /2⌉ × Vec A ⌊ n /2⌋
split []           = ([]     , [])
split (x ∷ [])     = (x ∷ [] , [])
split (x ∷ y ∷ xs) = Prod.map (_∷_ x) (_∷_ y) (split xs)
toList : ∀ {a n} {A : Set a} → Vec A n → List A
toList []       = List.[]
toList (x ∷ xs) = List._∷_ x (toList xs)
fromList : ∀ {a} {A : Set a} → (xs : List A) → Vec A (List.length xs)
fromList List.[]         = []
fromList (List._∷_ x xs) = x ∷ fromList xs
reverse : ∀ {a n} {A : Set a} → Vec A n → Vec A n
reverse {A = A} = foldl (Vec A) (λ rev x → x ∷ rev) []
infixl 5 _∷ʳ_
_∷ʳ_ : ∀ {a n} {A : Set a} → Vec A n → A → Vec A (1 + n)
[]       ∷ʳ y = [ y ]
(x ∷ xs) ∷ʳ y = x ∷ (xs ∷ʳ y)
initLast : ∀ {a n} {A : Set a} (xs : Vec A (1 + n)) →
           ∃₂ λ (ys : Vec A n) (y : A) → xs ≡ ys ∷ʳ y
initLast {n = zero}  (x ∷ [])         = ([] , x , refl)
initLast {n = suc n} (x ∷ xs)         with initLast xs
initLast {n = suc n} (x ∷ .(ys ∷ʳ y)) | (ys , y , refl) =
  ((x ∷ ys) , y , refl)
init : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n
init xs         with initLast xs
init .(ys ∷ʳ y) | (ys , y , refl) = ys
last : ∀ {a n} {A : Set a} → Vec A (1 + n) → A
last xs         with initLast xs
last .(ys ∷ʳ y) | (ys , y , refl) = y