module Data.Vec where
open import Data.Nat
open import Data.Fin using (Fin; zero; suc)
open import Data.List.Base as List using (List)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_)
open import Data.These as These using (These; this; that; these)
open import Function
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary using (yes; no)
open import Relation.Unary using (Pred; Decidable)
infixr 5 _∷_
data Vec {a} (A : Set a) : ℕ → Set a where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
infix 4 _[_]=_
data _[_]=_ {a} {A : Set a} :
{n : ℕ} → Vec A n → Fin n → A → Set a where
here : ∀ {n} {x} {xs : Vec A n} → x ∷ xs [ zero ]= x
there : ∀ {n} {i} {x y} {xs : Vec A n}
(xs[i]=x : xs [ i ]= x) → y ∷ xs [ suc i ]= x
head : ∀ {a n} {A : Set a} → Vec A (1 + n) → A
head (x ∷ xs) = x
tail : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n
tail (x ∷ xs) = xs
lookup : ∀ {a n} {A : Set a} → Fin n → Vec A n → A
lookup zero (x ∷ xs) = x
lookup (suc i) (x ∷ xs) = lookup i xs
insert : ∀ {a n} {A : Set a} → Fin (suc n) → A → Vec A n → Vec A (suc n)
insert zero x xs = x ∷ xs
insert (suc ()) x []
insert (suc i) x (y ∷ xs) = y ∷ insert i x xs
remove : ∀ {a n} {A : Set a} → Fin (suc n) → Vec A (suc n) → Vec A n
remove zero (_ ∷ xs) = xs
remove (suc ()) (x ∷ [])
remove (suc i) (x ∷ y ∷ xs) = x ∷ remove i (y ∷ xs)
infixl 6 _[_]≔_
_[_]≔_ : ∀ {a n} {A : Set a} → Vec A n → Fin n → A → Vec A n
(x ∷ xs) [ zero ]≔ y = y ∷ xs
(x ∷ xs) [ suc i ]≔ y = x ∷ xs [ i ]≔ y
map : ∀ {a b n} {A : Set a} {B : Set b} →
(A → B) → Vec A n → Vec B n
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
infixr 5 _++_
_++_ : ∀ {a m n} {A : Set a} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
concat : ∀ {a m n} {A : Set a} →
Vec (Vec A m) n → Vec A (n * m)
concat [] = []
concat (xs ∷ xss) = xs ++ concat xss
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
alignWith : ∀ {m n} → (These A B → C) → Vec A m → Vec B n → Vec C (m ⊔ n)
alignWith f [] bs = map (f ∘′ that) bs
alignWith f as@(_ ∷ _) [] = map (f ∘′ this) as
alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ alignWith f as bs
zipWith : ∀ {n} → (A → B → C) → Vec A n → Vec B n → Vec C n
zipWith f [] [] = []
zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys
unzipWith : ∀ {n} → (A → B × C) → Vec A n → Vec B n × Vec C n
unzipWith f [] = [] , []
unzipWith f (a ∷ as) = Prod.zip _∷_ _∷_ (f a) (unzipWith f as)
module _ {a b} {A : Set a} {B : Set b} where
align : ∀ {m n} → Vec A m → Vec B n → Vec (These A B) (m ⊔ n)
align = alignWith id
zip : ∀ {n} → Vec A n → Vec B n → Vec (A × B) n
zip = zipWith _,_
unzip : ∀ {n} → Vec (A × B) n → Vec A n × Vec B n
unzip = unzipWith id
infixr 5 _⋎_
_⋎_ : ∀ {a m n} {A : Set a} →
Vec A m → Vec A n → Vec A (m +⋎ n)
[] ⋎ ys = ys
(x ∷ xs) ⋎ ys = x ∷ (ys ⋎ xs)
infixl 4 _⊛_
_⊛_ : ∀ {a b n} {A : Set a} {B : Set b} →
Vec (A → B) n → Vec A n → Vec B n
[] ⊛ _ = []
(f ∷ fs) ⊛ (x ∷ xs) = f x ∷ (fs ⊛ xs)
infixl 1 _>>=_
_>>=_ : ∀ {a b m n} {A : Set a} {B : Set b} →
Vec A m → (A → Vec B n) → Vec B (m * n)
xs >>= f = concat (map f xs)
infixl 4 _⊛*_
_⊛*_ : ∀ {a b m n} {A : Set a} {B : Set b} →
Vec (A → B) m → Vec A n → Vec B (m * n)
fs ⊛* xs = fs >>= λ f → map f xs
allPairs : ∀ {a b m n} {A : Set a} {B : Set b} →
Vec A m → Vec B n → Vec (A × B) (m * n)
allPairs xs ys = map _,_ xs ⊛* ys
foldr : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
(∀ {n} → A → B n → B (suc n)) →
B zero →
Vec A m → B m
foldr b _⊕_ n [] = n
foldr b _⊕_ n (x ∷ xs) = x ⊕ foldr b _⊕_ n xs
foldr₁ : ∀ {a} {A : Set a} {m} →
(A → A → A) → Vec A (suc m) → A
foldr₁ _⊕_ (x ∷ []) = x
foldr₁ _⊕_ (x ∷ y ∷ ys) = x ⊕ foldr₁ _⊕_ (y ∷ ys)
foldl : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
(∀ {n} → B n → A → B (suc n)) →
B zero →
Vec A m → B m
foldl b _⊕_ n [] = n
foldl b _⊕_ n (x ∷ xs) = foldl (λ n → b (suc n)) _⊕_ (n ⊕ x) xs
foldl₁ : ∀ {a} {A : Set a} {m} →
(A → A → A) → Vec A (suc m) → A
foldl₁ _⊕_ (x ∷ xs) = foldl _ _⊕_ x xs
sum : ∀ {n} → Vec ℕ n → ℕ
sum = foldr _ _+_ 0
count : ∀ {a p} {A : Set a} {P : Pred A p} → Decidable P →
∀ {n} → Vec A n → ℕ
count P? [] = zero
count P? (x ∷ xs) with P? x
... | yes _ = suc (count P? xs)
... | no _ = count P? xs
[_] : ∀ {a} {A : Set a} → A → Vec A 1
[ x ] = x ∷ []
replicate : ∀ {a n} {A : Set a} → A → Vec A n
replicate {n = zero} x = []
replicate {n = suc n} x = x ∷ replicate x
tabulate : ∀ {n a} {A : Set a} → (Fin n → A) → Vec A n
tabulate {zero} f = []
tabulate {suc n} f = f zero ∷ tabulate (f ∘ suc)
allFin : ∀ n → Vec (Fin n) n
allFin _ = tabulate id
splitAt : ∀ {a} {A : Set a} m {n} (xs : Vec A (m + n)) →
∃₂ λ (ys : Vec A m) (zs : Vec A n) → xs ≡ ys ++ zs
splitAt zero xs = ([] , xs , refl)
splitAt (suc m) (x ∷ xs) with splitAt m xs
splitAt (suc m) (x ∷ .(ys ++ zs)) | (ys , zs , refl) =
((x ∷ ys) , zs , refl)
take : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A m
take m xs with splitAt m xs
take m .(ys ++ zs) | (ys , zs , refl) = ys
drop : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A n
drop m xs with splitAt m xs
drop m .(ys ++ zs) | (ys , zs , refl) = zs
group : ∀ {a} {A : Set a} n k (xs : Vec A (n * k)) →
∃ λ (xss : Vec (Vec A k) n) → xs ≡ concat xss
group zero k [] = ([] , refl)
group (suc n) k xs with splitAt k xs
group (suc n) k .(ys ++ zs) | (ys , zs , refl) with group n k zs
group (suc n) k .(ys ++ concat zss) | (ys , ._ , refl) | (zss , refl) =
((ys ∷ zss) , refl)
split : ∀ {a n} {A : Set a} → Vec A n → Vec A ⌈ n /2⌉ × Vec A ⌊ n /2⌋
split [] = ([] , [])
split (x ∷ []) = (x ∷ [] , [])
split (x ∷ y ∷ xs) = Prod.map (_∷_ x) (_∷_ y) (split xs)
toList : ∀ {a n} {A : Set a} → Vec A n → List A
toList [] = List.[]
toList (x ∷ xs) = List._∷_ x (toList xs)
fromList : ∀ {a} {A : Set a} → (xs : List A) → Vec A (List.length xs)
fromList List.[] = []
fromList (List._∷_ x xs) = x ∷ fromList xs
reverse : ∀ {a n} {A : Set a} → Vec A n → Vec A n
reverse {A = A} = foldl (Vec A) (λ rev x → x ∷ rev) []
infixl 5 _∷ʳ_
_∷ʳ_ : ∀ {a n} {A : Set a} → Vec A n → A → Vec A (1 + n)
[] ∷ʳ y = [ y ]
(x ∷ xs) ∷ʳ y = x ∷ (xs ∷ʳ y)
initLast : ∀ {a n} {A : Set a} (xs : Vec A (1 + n)) →
∃₂ λ (ys : Vec A n) (y : A) → xs ≡ ys ∷ʳ y
initLast {n = zero} (x ∷ []) = ([] , x , refl)
initLast {n = suc n} (x ∷ xs) with initLast xs
initLast {n = suc n} (x ∷ .(ys ∷ʳ y)) | (ys , y , refl) =
((x ∷ ys) , y , refl)
init : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n
init xs with initLast xs
init .(ys ∷ʳ y) | (ys , y , refl) = ys
last : ∀ {a n} {A : Set a} → Vec A (1 + n) → A
last xs with initLast xs
last .(ys ∷ʳ y) | (ys , y , refl) = y