module Data.List.Base where
open import Data.Nat.Base using (ℕ; zero; suc; _+_; _*_)
open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Data.Bool.Base
using (Bool; false; true; not; _∧_; _∨_; if_then_else_)
open import Data.Maybe.Base using (Maybe; nothing; just)
open import Data.Product as Prod using (_×_; _,_)
open import Data.These using (These; this; that; these)
open import Function using (id; _∘_ ; _∘′_)
open import Relation.Nullary using (yes; no)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Unary.Properties using (∁?)
open import Agda.Builtin.List public
using (List; []; _∷_)
map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
mapMaybe : ∀ {a b} {A : Set a} {B : Set b} → (A → Maybe B) → List A → List B
mapMaybe p [] = []
mapMaybe p (x ∷ xs) with p x
... | just y = y ∷ mapMaybe p xs
... | nothing = mapMaybe p xs
infixr 5 _++_
_++_ : ∀ {a} {A : Set a} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
intersperse : ∀ {a} {A : Set a} → A → List A → List A
intersperse x [] = []
intersperse x (y ∷ []) = y ∷ []
intersperse x (y ∷ ys) = y ∷ x ∷ intersperse x ys
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
alignWith : (These A B → C) → List A → List B → List C
alignWith f [] bs = map (f ∘′ that) bs
alignWith f as [] = map (f ∘′ this) as
alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ alignWith f as bs
zipWith : (A → B → C) → List A → List B → List C
zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys
zipWith f _ _ = []
unalignWith : (A → These B C) → List A → List B × List C
unalignWith f [] = [] , []
unalignWith f (a ∷ as) with f a
... | this b = Prod.map₁ (b ∷_) (unalignWith f as)
... | that c = Prod.map₂ (c ∷_) (unalignWith f as)
... | these b c = Prod.map (b ∷_) (c ∷_) (unalignWith f as)
unzipWith : (A → B × C) → List A → List B × List C
unzipWith f [] = [] , []
unzipWith f (xy ∷ xys) = Prod.zip _∷_ _∷_ (f xy) (unzipWith f xys)
module _ {a b} {A : Set a} {B : Set b} where
align : List A → List B → List (These A B)
align = alignWith id
zip : List A → List B → List (A × B)
zip = zipWith (_,_)
unalign : List (These A B) → List A × List B
unalign = unalignWith id
unzip : List (A × B) → List A × List B
unzip = unzipWith id
foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → B
foldr c n [] = n
foldr c n (x ∷ xs) = c x (foldr c n xs)
foldl : ∀ {a b} {A : Set a} {B : Set b} → (A → B → A) → A → List B → A
foldl c n [] = n
foldl c n (x ∷ xs) = foldl c (c n x) xs
concat : ∀ {a} {A : Set a} → List (List A) → List A
concat = foldr _++_ []
concatMap : ∀ {a b} {A : Set a} {B : Set b} →
(A → List B) → List A → List B
concatMap f = concat ∘ map f
null : ∀ {a} {A : Set a} → List A → Bool
null [] = true
null (x ∷ xs) = false
and : List Bool → Bool
and = foldr _∧_ true
or : List Bool → Bool
or = foldr _∨_ false
any : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool
any p = or ∘ map p
all : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool
all p = and ∘ map p
sum : List ℕ → ℕ
sum = foldr _+_ 0
product : List ℕ → ℕ
product = foldr _*_ 1
length : ∀ {a} {A : Set a} → List A → ℕ
length = foldr (λ _ → suc) 0
[_] : ∀ {a} {A : Set a} → A → List A
[ x ] = x ∷ []
fromMaybe : ∀ {a} {A : Set a} → Maybe A → List A
fromMaybe (just x) = [ x ]
fromMaybe nothing = []
replicate : ∀ {a} {A : Set a} → (n : ℕ) → A → List A
replicate zero x = []
replicate (suc n) x = x ∷ replicate n x
inits : ∀ {a} {A : Set a} → List A → List (List A)
inits [] = [] ∷ []
inits (x ∷ xs) = [] ∷ map (x ∷_) (inits xs)
tails : ∀ {a} {A : Set a} → List A → List (List A)
tails [] = [] ∷ []
tails (x ∷ xs) = (x ∷ xs) ∷ tails xs
scanr : ∀ {a b} {A : Set a} {B : Set b} →
(A → B → B) → B → List A → List B
scanr f e [] = e ∷ []
scanr f e (x ∷ xs) with scanr f e xs
... | [] = []
... | y ∷ ys = f x y ∷ y ∷ ys
scanl : ∀ {a b} {A : Set a} {B : Set b} →
(A → B → A) → A → List B → List A
scanl f e [] = e ∷ []
scanl f e (x ∷ xs) = e ∷ scanl f (f e x) xs
applyUpTo : ∀ {a} {A : Set a} → (ℕ → A) → ℕ → List A
applyUpTo f zero = []
applyUpTo f (suc n) = f zero ∷ applyUpTo (f ∘ suc) n
applyDownFrom : ∀ {a} {A : Set a} → (ℕ → A) → ℕ → List A
applyDownFrom f zero = []
applyDownFrom f (suc n) = f n ∷ applyDownFrom f n
tabulate : ∀ {a n} {A : Set a} (f : Fin n → A) → List A
tabulate {_} {zero} f = []
tabulate {_} {suc n} f = f fzero ∷ tabulate (f ∘ fsuc)
lookup : ∀ {a} {A : Set a} (xs : List A) → Fin (length xs) → A
lookup [] ()
lookup (x ∷ xs) fzero = x
lookup (x ∷ xs) (fsuc i) = lookup xs i
upTo : ℕ → List ℕ
upTo = applyUpTo id
downFrom : ℕ → List ℕ
downFrom = applyDownFrom id
allFin : ∀ n → List (Fin n)
allFin n = tabulate id
unfold : ∀ {a b} {A : Set a} (B : ℕ → Set b)
(f : ∀ {n} → B (suc n) → Maybe (A × B n)) →
∀ {n} → B n → List A
unfold B f {n = zero} s = []
unfold B f {n = suc n} s with f s
... | nothing = []
... | just (x , s') = x ∷ unfold B f s'
module _ {a} {A : Set a} where
uncons : List A → Maybe (A × List A)
uncons [] = nothing
uncons (x ∷ xs) = just (x , xs)
head : List A → Maybe A
head [] = nothing
head (x ∷ _) = just x
tail : List A → Maybe (List A)
tail [] = nothing
tail (_ ∷ xs) = just xs
take : ∀ {a} {A : Set a} → ℕ → List A → List A
take zero xs = []
take (suc n) [] = []
take (suc n) (x ∷ xs) = x ∷ take n xs
drop : ∀ {a} {A : Set a} → ℕ → List A → List A
drop zero xs = xs
drop (suc n) [] = []
drop (suc n) (x ∷ xs) = drop n xs
splitAt : ∀ {a} {A : Set a} → ℕ → List A → (List A × List A)
splitAt zero xs = ([] , xs)
splitAt (suc n) [] = ([] , [])
splitAt (suc n) (x ∷ xs) with splitAt n xs
... | (ys , zs) = (x ∷ ys , zs)
takeWhile : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → List A
takeWhile P? [] = []
takeWhile P? (x ∷ xs) with P? x
... | yes _ = x ∷ takeWhile P? xs
... | no _ = []
dropWhile : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → List A
dropWhile P? [] = []
dropWhile P? (x ∷ xs) with P? x
... | yes _ = dropWhile P? xs
... | no _ = x ∷ xs
filter : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → List A
filter P? [] = []
filter P? (x ∷ xs) with P? x
... | no _ = filter P? xs
... | yes _ = x ∷ filter P? xs
partition : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → (List A × List A)
partition P? [] = ([] , [])
partition P? (x ∷ xs) with P? x | partition P? xs
... | yes _ | (ys , zs) = (x ∷ ys , zs)
... | no _ | (ys , zs) = (ys , x ∷ zs)
span : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → (List A × List A)
span P? [] = ([] , [])
span P? (x ∷ xs) with P? x
... | yes _ = Prod.map (x ∷_) id (span P? xs)
... | no _ = ([] , x ∷ xs)
break : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → (List A × List A)
break P? = span (∁? P?)
reverse : ∀ {a} {A : Set a} → List A → List A
reverse = foldl (λ rev x → x ∷ rev) []
infixl 5 _∷ʳ_
_∷ʳ_ : ∀ {a} {A : Set a} → List A → A → List A
xs ∷ʳ x = xs ++ [ x ]
infixl 5 _∷ʳ'_
data InitLast {a} {A : Set a} : List A → Set a where
[] : InitLast []
_∷ʳ'_ : (xs : List A) (x : A) → InitLast (xs ∷ʳ x)
initLast : ∀ {a} {A : Set a} → (xs : List A) → InitLast xs
initLast [] = []
initLast (x ∷ xs) with initLast xs
initLast (x ∷ .[]) | [] = [] ∷ʳ' x
initLast (x ∷ .(ys ∷ʳ y)) | ys ∷ʳ' y = (x ∷ ys) ∷ʳ' y
gfilter = mapMaybe
{-# WARNING_ON_USAGE gfilter
"Warning: gfilter was deprecated in v0.15.
Please use mapMaybe instead."
#-}
boolFilter : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
boolFilter p = mapMaybe (λ x → if p x then just x else nothing)
boolPartition : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
boolPartition p [] = ([] , [])
boolPartition p (x ∷ xs) with p x | boolPartition p xs
... | true | (ys , zs) = (x ∷ ys , zs)
... | false | (ys , zs) = (ys , x ∷ zs)
boolTakeWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
boolTakeWhile p [] = []
boolTakeWhile p (x ∷ xs) with p x
... | true = x ∷ boolTakeWhile p xs
... | false = []
boolDropWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
boolDropWhile p [] = []
boolDropWhile p (x ∷ xs) with p x
... | true = boolDropWhile p xs
... | false = x ∷ xs
boolSpan : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
boolSpan p [] = ([] , [])
boolSpan p (x ∷ xs) with p x
... | true = Prod.map (x ∷_) id (boolSpan p xs)
... | false = ([] , x ∷ xs)
boolBreak : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
boolBreak p = boolSpan (not ∘ p)