module Data.Sum.Base where
open import Function using (_∘_; _-[_]-_ ; id)
open import Level using (_⊔_)
infixr 1 _⊎_
data _⊎_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
{-# FOREIGN GHC type AgdaEither a b c d = Either c d #-}
{-# COMPILE GHC _⊎_ = data AgdaEither (Left | Right) #-}
[_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : A ⊎ B → Set c} →
((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) →
((x : A ⊎ B) → C x)
[ f , g ] (inj₁ x) = f x
[ f , g ] (inj₂ y) = g y
[_,_]′ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(A → C) → (B → C) → (A ⊎ B → C)
[_,_]′ = [_,_]
swap : ∀ {a b} {A : Set a} {B : Set b} → A ⊎ B → B ⊎ A
swap (inj₁ x) = inj₂ x
swap (inj₂ x) = inj₁ x
map : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
(A → C) → (B → D) → (A ⊎ B → C ⊎ D)
map f g = [ inj₁ ∘ f , inj₂ ∘ g ]
map₁ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}→
(A → C) → (A ⊎ B → C ⊎ B)
map₁ f = map f id
map₂ : ∀ {a b d} {A : Set a} {B : Set b} {D : Set d} →
(B → D) → (A ⊎ B → A ⊎ D)
map₂ = map id
infixr 1 _-⊎-_
_-⊎-_ : ∀ {a b c d} {A : Set a} {B : Set b} →
(A → B → Set c) → (A → B → Set d) → (A → B → Set (c ⊔ d))
f -⊎- g = f -[ _⊎_ ]- g