------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of homogeneous binary relations
------------------------------------------------------------------------

-- This file contains some core definitions which are reexported by
-- Relation.Binary or Relation.Binary.PropositionalEquality.

module Relation.Binary.Core where

open import Agda.Builtin.Equality using (_≡_) renaming (refl to ≡-refl)

open import Data.Product using (_×_)
open import Data.Sum.Base using (_⊎_)
open import Function using (_on_; flip)
open import Level
open import Relation.Nullary using (Dec; ¬_)

------------------------------------------------------------------------
-- Binary relations

-- Heterogeneous binary relations

REL :  {a b}  Set a  Set b  ( : Level)  Set (a  b  suc )
REL A B  = A  B  Set 

-- Homogeneous binary relations

Rel :  {a}  Set a  ( : Level)  Set (a  suc )
Rel A  = REL A A 

------------------------------------------------------------------------
-- Simple properties of binary relations

infixr 4 _⇒_ _=[_]⇒_

-- Implication/containment. Could also be written ⊆.

_⇒_ :  {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} 
      REL A B ℓ₁  REL A B ℓ₂  Set _
P  Q =  {i j}  P i j  Q i j

-- Generalised implication. If P ≡ Q it can be read as "f preserves P".

_=[_]⇒_ :  {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} 
          Rel A ℓ₁  (A  B)  Rel B ℓ₂  Set _
P =[ f ]⇒ Q = P  (Q on f)

-- A synonym, along with a binary variant.

_Preserves_⟶_ :  {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} 
                (A  B)  Rel A ℓ₁  Rel B ℓ₂  Set _
f Preserves P  Q = P =[ f ]⇒ Q

_Preserves₂_⟶_⟶_ :
   {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} 
  (A  B  C)  Rel A ℓ₁  Rel B ℓ₂  Rel C ℓ₃  Set _
_+_ Preserves₂ P  Q  R =
   {x y u v}  P x y  Q u v  R (x + u) (y + v)

-- Reflexivity of _∼_ can be expressed as _≈_ ⇒ _∼_, for some
-- underlying equality _≈_. However, the following variant is often
-- easier to use.

Reflexive :  {a } {A : Set a}  Rel A   Set _
Reflexive _∼_ =  {x}  x  x

-- Irreflexivity is defined using an underlying equality.

Irreflexive :  {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} 
              REL A B ℓ₁  REL A B ℓ₂  Set _
Irreflexive _≈_ _<_ =  {x y}  x  y  ¬ (x < y)

-- Generalised symmetry.

Sym :  {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} 
      REL A B ℓ₁  REL B A ℓ₂  Set _
Sym P Q = P  flip Q

Symmetric :  {a } {A : Set a}  Rel A   Set _
Symmetric _∼_ = Sym _∼_ _∼_

-- Generalised transitivity.

Trans :  {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} 
        REL A B ℓ₁  REL B C ℓ₂  REL A C ℓ₃  Set _
Trans P Q R =  {i j k}  P i j  Q j k  R i k

-- A variant of Trans.

TransFlip :  {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} 
            REL A B ℓ₁  REL B C ℓ₂  REL A C ℓ₃  Set _
TransFlip P Q R =  {i j k}  Q j k  P i j  R i k

Transitive :  {a } {A : Set a}  Rel A   Set _
Transitive _∼_ = Trans _∼_ _∼_ _∼_

Antisymmetric :  {a ℓ₁ ℓ₂} {A : Set a}  Rel A ℓ₁  Rel A ℓ₂  Set _
Antisymmetric _≈_ _≤_ =  {x y}  x  y  y  x  x  y

Asymmetric :  {a } {A : Set a}  Rel A   Set _
Asymmetric _<_ =  {x y}  x < y  ¬ (y < x)

Total :  {a } {A : Set a}  Rel A   Set _
Total _∼_ =  x y  (x  y)  (y  x)

data Tri {a b c} (A : Set a) (B : Set b) (C : Set c) :
         Set (a  b  c) where
  tri< : ( a :   A) (¬b : ¬ B) (¬c : ¬ C)  Tri A B C
  tri≈ : (¬a : ¬ A) ( b :   B) (¬c : ¬ C)  Tri A B C
  tri> : (¬a : ¬ A) (¬b : ¬ B) ( c :   C)  Tri A B C

Trichotomous :  {a ℓ₁ ℓ₂} {A : Set a}  Rel A ℓ₁  Rel A ℓ₂  Set _
Trichotomous _≈_ _<_ =  x y  Tri (x < y) (x  y) (x > y)
  where _>_ = flip _<_

Maximum :  {a } {A : Set a}  Rel A   A  Set _
Maximum _≤_  =  x  x  

Minimum :  {a } {A : Set a}  Rel A   A  Set _
Minimum _≤_ = Maximum (flip _≤_)

_Respects_ :  {a ℓ₁ ℓ₂} {A : Set a}  (A  Set ℓ₁)  Rel A ℓ₂  Set _
P Respects _∼_ =  {x y}  x  y  P x  P y

_Respectsʳ_ :  {a ℓ₁ ℓ₂} {A : Set a}  Rel A ℓ₁  Rel A ℓ₂  Set _
P Respectsʳ _∼_ =  {x}  (P x) Respects _∼_

_Respectsˡ_ :  {a ℓ₁ ℓ₂} {A : Set a}  Rel A ℓ₁  Rel A ℓ₂  Set _
P Respectsˡ _∼_ =  {y}  (flip P y) Respects _∼_

_Respects₂_ :  {a ℓ₁ ℓ₂} {A : Set a}  Rel A ℓ₁  Rel A ℓ₂  Set _
P Respects₂ _∼_ = (P Respectsʳ _∼_) × (P Respectsˡ _∼_)

Substitutive :  {a ℓ₁} {A : Set a}  Rel A ℓ₁  (ℓ₂ : Level)  Set _
Substitutive {A = A} _∼_ p = (P : A  Set p)  P Respects _∼_

Decidable :  {a b } {A : Set a} {B : Set b}  REL A B   Set _
Decidable _∼_ =  x y  Dec (x  y)

Irrelevant :  {a b } {A : Set a} {B : Set b}  REL A B   Set _
Irrelevant _∼_ =  {x y} (a : x  y) (b : x  y)  a  b

record NonEmpty {a b } {A : Set a} {B : Set b}
                (T : REL A B ) : Set (a  b  ) where
  constructor nonEmpty
  field
    {x}   : A
    {y}   : B
    proof : T x y

------------------------------------------------------------------------
-- Equivalence relations

-- The preorders of this library are defined in terms of an underlying
-- equivalence relation, and hence equivalence relations are not
-- defined in terms of preorders.

record IsEquivalence {a } {A : Set a}
                     (_≈_ : Rel A ) : Set (a  ) where
  field
    refl  : Reflexive _≈_
    sym   : Symmetric _≈_
    trans : Transitive _≈_

  reflexive : _≡_  _≈_
  reflexive ≡-refl = refl