------------------------------------------------------------------------
-- The Agda standard library
--
-- List-related properties
------------------------------------------------------------------------

-- Note that the lemmas below could be generalised to work with other
-- equalities than _≡_.

module Data.List.Properties where

open import Algebra
open import Algebra.Structures
open import Algebra.FunctionProperties
open import Data.Bool.Base using (Bool; false; true; not; if_then_else_)
open import Data.List as List
open import Data.List.All using (All; []; _∷_)
open import Data.List.Any using (Any; here; there)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Nat
open import Data.Nat.Properties
open import Data.Fin using (Fin; zero; suc)
open import Data.Product as Prod hiding (map; zip)
open import Data.These as These using (These; this; that; these)
open import Function
import Relation.Binary.EqReasoning as EqR
open import Relation.Binary.PropositionalEquality as P
  using (_≡_; _≢_; _≗_; refl ; sym)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Unary using (Pred; Decidable; )
open import Relation.Unary.Properties using (∁?)

------------------------------------------------------------------------
-- _∷_

module _ {a} {A : Set a} {x y : A} {xs ys : List A} where

 ∷-injective : x  xs  y List.∷ ys  x  y × xs  ys
 ∷-injective refl = (refl , refl)

 ∷-injectiveˡ : x  xs  y List.∷ ys  x  y
 ∷-injectiveˡ refl = refl

 ∷-injectiveʳ : x  xs  y List.∷ ys  xs  ys
 ∷-injectiveʳ refl = refl

------------------------------------------------------------------------
-- map

module _ {a} {A : Set a} where

  map-id : map id  id {A = List A}
  map-id []       = refl
  map-id (x  xs) = P.cong (x ∷_) (map-id xs)

  map-id₂ :  {f : A  A} {xs}  All  x  f x  x) xs  map f xs  xs
  map-id₂ []         = refl
  map-id₂ (fx≡x  pxs) = P.cong₂ _∷_ fx≡x (map-id₂ pxs)

module _ {a b} {A : Set a} {B : Set b} where

  map-++-commute :  (f : A  B) xs ys 
                   map f (xs ++ ys)  map f xs ++ map f ys
  map-++-commute f []       ys = refl
  map-++-commute f (x  xs) ys = P.cong (f x ∷_) (map-++-commute f xs ys)

  map-cong :  {f g : A  B}  f  g  map f  map g
  map-cong f≗g []       = refl
  map-cong f≗g (x  xs) = P.cong₂ _∷_ (f≗g x) (map-cong f≗g xs)

  map-cong₂ :  {f g : A  B} {xs} 
              All  x  f x  g x) xs  map f xs  map g xs
  map-cong₂ []                = refl
  map-cong₂ (fx≡gx  fxs≡gxs) = P.cong₂ _∷_ fx≡gx (map-cong₂ fxs≡gxs)

  length-map :  (f : A  B) xs  length (map f xs)  length xs
  length-map f []       = refl
  length-map f (x  xs) = P.cong suc (length-map f xs)

module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where

  map-compose : {g : B  C} {f : A  B}  map (g  f)  map g  map f
  map-compose []       = refl
  map-compose (x  xs) = P.cong (_ ∷_) (map-compose xs)

------------------------------------------------------------------------
-- mapMaybe

module _ {a} {A : Set a} where

  mapMaybe-just : (xs : List A)  mapMaybe just xs  xs
  mapMaybe-just []       = refl
  mapMaybe-just (x  xs) = P.cong (x ∷_) (mapMaybe-just xs)

  mapMaybe-nothing : (xs : List A) 
                     mapMaybe {B = A}  _  nothing) xs  []
  mapMaybe-nothing []       = refl
  mapMaybe-nothing (x  xs) = mapMaybe-nothing xs

module _ {a b} {A : Set a} {B : Set b} (f : A  Maybe B) where

  mapMaybe-concatMap : mapMaybe f  concatMap (fromMaybe  f)
  mapMaybe-concatMap [] = refl
  mapMaybe-concatMap (x  xs) with f x
  ... | just y  = P.cong (y ∷_) (mapMaybe-concatMap xs)
  ... | nothing = mapMaybe-concatMap xs

  length-mapMaybe :  xs  length (mapMaybe f xs)  length xs
  length-mapMaybe []       = z≤n
  length-mapMaybe (x  xs) with f x
  ... | just y  = s≤s (length-mapMaybe xs)
  ... | nothing = ≤-step (length-mapMaybe xs)

------------------------------------------------------------------------
-- _++_

module _ {a} {A : Set a} where

  ++-assoc : Associative {A = List A} _≡_ _++_
  ++-assoc []       ys zs = refl
  ++-assoc (x  xs) ys zs = P.cong (x ∷_) (++-assoc xs ys zs)

  ++-identityˡ : LeftIdentity {A = List A} _≡_ [] _++_
  ++-identityˡ xs = refl

  ++-identityʳ : RightIdentity {A = List A} _≡_ [] _++_
  ++-identityʳ []       = refl
  ++-identityʳ (x  xs) = P.cong (x ∷_) (++-identityʳ xs)

  ++-identity : Identity {A = List A} _≡_ [] _++_
  ++-identity = ++-identityˡ , ++-identityʳ

  ++-identityʳ-unique :  (xs : List A) {ys}  xs  xs ++ ys  ys  []
  ++-identityʳ-unique []       refl = refl
  ++-identityʳ-unique (x  xs) eq   =
    ++-identityʳ-unique xs (proj₂ (∷-injective eq))

  ++-identityˡ-unique :  {xs} (ys : List A)  xs  ys ++ xs  ys  []
  ++-identityˡ-unique               []       _  = refl
  ++-identityˡ-unique {xs = []}     (y  ys) ()
  ++-identityˡ-unique {xs = x  xs} (y  ys) eq
    with ++-identityˡ-unique (ys ++ [ x ]) (begin
         xs                  ≡⟨ proj₂ (∷-injective eq) 
         ys ++ x  xs        ≡⟨ P.sym (++-assoc ys [ x ] xs) 
         (ys ++ [ x ]) ++ xs )
    where open P.≡-Reasoning
  ++-identityˡ-unique {xs = x  xs} (y  []   ) eq | ()
  ++-identityˡ-unique {xs = x  xs} (y  _  _) eq | ()

  length-++ :  (xs : List A) {ys}  length (xs ++ ys)  length xs + length ys
  length-++ []       = refl
  length-++ (x  xs) = P.cong suc (length-++ xs)

  ++-isSemigroup : IsSemigroup {A = List A} _≡_ _++_
  ++-isSemigroup = record
    { isEquivalence = P.isEquivalence
    ; assoc         = ++-assoc
    ; ∙-cong        = P.cong₂ _++_
    }

  ++-isMonoid : IsMonoid {A = List A} _≡_ _++_ []
  ++-isMonoid = record
    { isSemigroup = ++-isSemigroup
    ; identity    = ++-identity
    }

++-semigroup :  {a} (A : Set a)  Semigroup _ _
++-semigroup A = record
  { Carrier  = List A
  ; _≈_      = _≡_
  ; _∙_      = _++_
  ; isSemigroup = ++-isSemigroup
  }

++-monoid :  {a} (A : Set a)  Monoid _ _
++-monoid A = record
  { Carrier  = List A
  ; _≈_      = _≡_
  ; _∙_      = _++_
  ; ε        = []
  ; isMonoid = ++-isMonoid
  }

------------------------------------------------------------------------
-- alignWith

module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
         {f g : These A B  C} where

  alignWith-cong : f  g   as  alignWith f as  alignWith g as
  alignWith-cong f≗g []         bs       = map-cong (f≗g  that) bs
  alignWith-cong f≗g as@(_  _) []       = map-cong (f≗g  this) as
  alignWith-cong f≗g (a  as)   (b  bs) =
    P.cong₂ _∷_ (f≗g (these a b)) (alignWith-cong f≗g as bs)

module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
         (f : These A B  C) where

  length-alignWith :  xs ys 
                   length (alignWith f xs ys)  length xs  length ys
  length-alignWith []         ys       = length-map (f ∘′ that) ys
  length-alignWith xs@(_  _) []       = length-map (f ∘′ this) xs
  length-alignWith (x  xs)   (y  ys) = P.cong suc (length-alignWith xs ys)

  alignWith-map :  {d e} {D : Set d} {E : Set e} (g : D  A) (h : E  B) 
                 xs ys  alignWith f (map g xs) (map h ys) 
                          alignWith (f ∘′ These.map g h) xs ys
  alignWith-map g h []         ys     = sym (map-compose ys)
  alignWith-map g h xs@(_  _) []     = sym (map-compose xs)
  alignWith-map g h (x  xs) (y  ys) =
    P.cong₂ _∷_ refl (alignWith-map g h xs ys)

  map-alignWith :  {d} {D : Set d} (g : C  D)   xs ys 
                map g (alignWith f xs ys) 
                alignWith (g ∘′ f) xs ys
  map-alignWith g []         ys     = sym (map-compose ys)
  map-alignWith g xs@(_  _) []     = sym (map-compose xs)
  map-alignWith g (x  xs) (y  ys) =
    P.cong₂ _∷_ refl (map-alignWith g xs ys)

------------------------------------------------------------------------
-- zipWith

module _ {a b} {A : Set a} {B : Set b} (f : A  A  B) where

  zipWith-comm : (∀ x y  f x y  f y x) 
                  xs ys  zipWith f xs ys  zipWith f ys xs
  zipWith-comm f-comm []       []       = refl
  zipWith-comm f-comm []       (x  ys) = refl
  zipWith-comm f-comm (x  xs) []       = refl
  zipWith-comm f-comm (x  xs) (y  ys) =
    P.cong₂ _∷_ (f-comm x y) (zipWith-comm f-comm xs ys)

module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
         (f : A  B  C) where

  zipWith-identityˡ :  xs  zipWith f [] xs  []
  zipWith-identityˡ []       = refl
  zipWith-identityˡ (x  xs) = refl

  zipWith-identityʳ :  xs  zipWith f xs []  []
  zipWith-identityʳ []       = refl
  zipWith-identityʳ (x  xs) = refl

  length-zipWith :  xs ys 
                   length (zipWith f xs ys)  length xs  length ys
  length-zipWith []       []       = refl
  length-zipWith []       (y  ys) = refl
  length-zipWith (x  xs) []       = refl
  length-zipWith (x  xs) (y  ys) = P.cong suc (length-zipWith xs ys)

  zipWith-map :  {d e} {D : Set d} {E : Set e} (g : D  A) (h : E  B) 
                 xs ys  zipWith f (map g xs) (map h ys) 
                          zipWith  x y  f (g x) (h y)) xs ys
  zipWith-map g h []       []       = refl
  zipWith-map g h []       (y  ys) = refl
  zipWith-map g h (x  xs) []       = refl
  zipWith-map g h (x  xs) (y  ys) =
    P.cong₂ _∷_ refl (zipWith-map g h xs ys)

  map-zipWith :  {d} {D : Set d} (g : C  D)   xs ys 
                map g (zipWith f xs ys) 
                zipWith  x y  g (f x y)) xs ys
  map-zipWith g []       []       = refl
  map-zipWith g []       (y  ys) = refl
  map-zipWith g (x  xs) []       = refl
  map-zipWith g (x  xs) (y  ys) =
    P.cong₂ _∷_ refl (map-zipWith g xs ys)

------------------------------------------------------------------------
-- unalignWith

module _ {a b} {A : Set a} {B : Set b} where

  unalignWith-this : unalignWith ((A  These A B)  this)  (_, [])
  unalignWith-this []       = refl
  unalignWith-this (a  as) = P.cong (Prod.map₁ (a ∷_)) (unalignWith-this as)

  unalignWith-that : unalignWith ((B  These A B)  that)  ([] ,_)
  unalignWith-that []       = refl
  unalignWith-that (b  bs) = P.cong (Prod.map₂ (b ∷_)) (unalignWith-that bs)

module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
         {f g : C  These A B} where

  unalignWith-cong : f  g  unalignWith f  unalignWith g
  unalignWith-cong f≗g []       = refl
  unalignWith-cong f≗g (c  cs) with f c | g c | f≗g c
  ... | this a    | ._ | refl = P.cong (Prod.map₁ (a ∷_)) (unalignWith-cong f≗g cs)
  ... | that b    | ._ | refl = P.cong (Prod.map₂ (b ∷_)) (unalignWith-cong f≗g cs)
  ... | these a b | ._ | refl = P.cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-cong f≗g cs)

module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
         (f : C  These A B) where

  unalignWith-map :  {d} {D : Set d} (g : D  C) 
     ds  unalignWith f (map g ds)  unalignWith (f ∘′ g) ds
  unalignWith-map g []       = refl
  unalignWith-map g (d  ds) with f (g d)
  ... | this a    = P.cong (Prod.map₁ (a ∷_)) (unalignWith-map g ds)
  ... | that b    = P.cong (Prod.map₂ (b ∷_)) (unalignWith-map g ds)
  ... | these a b = P.cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-map g ds)

  map-unalignWith :  {d e} {D : Set d} {E : Set e} (g : A  D) (h : B  E) 
    Prod.map (map g) (map h) ∘′ unalignWith f  unalignWith (These.map g h ∘′ f)
  map-unalignWith g h []       = refl
  map-unalignWith g h (c  cs) with f c
  ... | this a    = P.cong (Prod.map₁ (g a ∷_)) (map-unalignWith g h cs)
  ... | that b    = P.cong (Prod.map₂ (h b ∷_)) (map-unalignWith g h cs)
  ... | these a b = P.cong (Prod.map (g a ∷_) (h b ∷_)) (map-unalignWith g h cs)

  unalignWith-alignWith : (g : These A B  C)  f ∘′ g  id 
                       as bs  unalignWith f (alignWith g as bs)  (as , bs)
  unalignWith-alignWith g g∘f≗id []         bs = begin
    unalignWith f (map (g ∘′ that) bs) ≡⟨ unalignWith-map (g ∘′ that) bs 
    unalignWith (f ∘′ g ∘′ that) bs    ≡⟨ unalignWith-cong (g∘f≗id  that) bs 
    unalignWith that bs                ≡⟨ unalignWith-that bs 
    [] , bs  where open P.≡-Reasoning
  unalignWith-alignWith g g∘f≗id as@(_  _) [] = begin
    unalignWith f (map (g ∘′ this) as) ≡⟨ unalignWith-map (g ∘′ this) as 
    unalignWith (f ∘′ g ∘′ this) as    ≡⟨ unalignWith-cong (g∘f≗id  this) as 
    unalignWith this as                ≡⟨ unalignWith-this as 
    as , []  where open P.≡-Reasoning
  unalignWith-alignWith g g∘f≗id (a  as)   (b  bs)
    rewrite g∘f≗id (these a b) = let ih = unalignWith-alignWith g g∘f≗id as bs in
                                 P.cong (Prod.map (a ∷_) (b ∷_)) ih

------------------------------------------------------------------------
-- unzipWith

module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
         (f : A  B × C) where

  length-unzipWith₁ :  xys 
                     length (proj₁ (unzipWith f xys))  length xys
  length-unzipWith₁ []        = refl
  length-unzipWith₁ (x  xys) = P.cong suc (length-unzipWith₁ xys)

  length-unzipWith₂ :  xys 
                     length (proj₂ (unzipWith f xys))  length xys
  length-unzipWith₂ []        = refl
  length-unzipWith₂ (x  xys) = P.cong suc (length-unzipWith₂ xys)

  zipWith-unzipWith : (g : B  C  A)  uncurry′ g  f  id 
                      uncurry′ (zipWith g)  (unzipWith f)   id
  zipWith-unzipWith g f∘g≗id []       = refl
  zipWith-unzipWith g f∘g≗id (x  xs) =
    P.cong₂ _∷_ (f∘g≗id x) (zipWith-unzipWith g f∘g≗id xs)

------------------------------------------------------------------------
-- foldr

foldr-universal :  {a b} {A : Set a} {B : Set b}
                  (h : List A  B) f e  (h []  e) 
                  (∀ x xs  h (x  xs)  f x (h xs)) 
                  h  foldr f e
foldr-universal h f e base step []       = base
foldr-universal h f e base step (x  xs) = begin
    h (x  xs)
  ≡⟨ step x xs 
    f x (h xs)
  ≡⟨ P.cong (f x) (foldr-universal h f e base step xs) 
    f x (foldr f e xs)
  
  where open P.≡-Reasoning

foldr-cong :  {a b} {A : Set a} {B : Set b}
             {f g : A  B  B} {d e : B} 
             (∀ x y  f x y  g x y)  d  e 
             foldr f d  foldr g e
foldr-cong f≗g refl []      = refl
foldr-cong f≗g d≡e (x  xs) rewrite foldr-cong f≗g d≡e xs = f≗g x _

foldr-fusion :  {a b c} {A : Set a} {B : Set b} {C : Set c}
               (h : B  C) {f : A  B  B} {g : A  C  C} (e : B) 
               (∀ x y  h (f x y)  g x (h y)) 
               h  foldr f e  foldr g (h e)
foldr-fusion h {f} {g} e fuse =
  foldr-universal (h  foldr f e) g (h e) refl
                   x xs  fuse x (foldr f e xs))

id-is-foldr :  {a} {A : Set a}  id {A = List A}  foldr _∷_ []
id-is-foldr = foldr-universal id _∷_ [] refl  _ _  refl)

++-is-foldr :  {a} {A : Set a} (xs ys : List A) 
           xs ++ ys  foldr _∷_ ys xs
++-is-foldr xs ys =
  begin
    xs ++ ys
  ≡⟨ P.cong (_++ ys) (id-is-foldr xs) 
    foldr _∷_ [] xs ++ ys
  ≡⟨ foldr-fusion (_++ ys) []  _ _  refl) xs 
    foldr _∷_ ([] ++ ys) xs
  ≡⟨⟩
    foldr _∷_ ys xs
  
  where open P.≡-Reasoning

foldr-++ :  {a b} {A : Set a} {B : Set b} (f : A  B  B) x ys zs 
           foldr f x (ys ++ zs)  foldr f (foldr f x zs) ys
foldr-++ f x []       zs = refl
foldr-++ f x (y  ys) zs = P.cong (f y) (foldr-++ f x ys zs)

map-is-foldr :  {a b} {A : Set a} {B : Set b} {f : A  B} 
            map f  foldr  x ys  f x  ys) []
map-is-foldr {f = f} =
  begin
    map f
  ≈⟨ P.cong (map f)  id-is-foldr 
    map f  foldr _∷_ []
  ≈⟨ foldr-fusion (map f) []  _ _  refl) 
    foldr  x ys  f x  ys) []
  
  where open EqR (P._→-setoid_ _ _)

foldr-∷ʳ :  {a b} {A : Set a} {B : Set b} (f : A  B  B) x y ys 
           foldr f x (ys ∷ʳ y)  foldr f (f y x) ys
foldr-∷ʳ f x y []       = refl
foldr-∷ʳ f x y (z  ys) = P.cong (f z) (foldr-∷ʳ f x y ys)

------------------------------------------------------------------------
-- foldl

module _ {a b} {A : Set a} {B : Set b} where

  foldl-++ :  (f : A  B  A) x ys zs 
             foldl f x (ys ++ zs)  foldl f (foldl f x ys) zs
  foldl-++ f x []       zs = refl
  foldl-++ f x (y  ys) zs = foldl-++ f (f x y) ys zs

  foldl-∷ʳ :  (f : A  B  A) x y ys 
             foldl f x (ys ∷ʳ y)  f (foldl f x ys) y
  foldl-∷ʳ f x y []       = refl
  foldl-∷ʳ f x y (z  ys) = foldl-∷ʳ f (f x z) y ys

------------------------------------------------------------------------
-- concat

module _ {a b} {A : Set a} {B : Set b} where

  concat-map :  {f : A  B}  concat  map (map f)  map f  concat
  concat-map {f = f} =
    begin
      concat  map (map f)
    ≈⟨ P.cong concat  map-is-foldr 
      concat  foldr  xs  map f xs ∷_) []
    ≈⟨ foldr-fusion concat []  _ _  refl) 
      foldr  ys  map f ys ++_) []
    ≈⟨ P.sym  foldr-fusion (map f) [] (map-++-commute f) 
      map f  concat
    
    where open EqR (P._→-setoid_ _ _)

------------------------------------------------------------------------
-- sum

sum-++-commute :  xs ys  sum (xs ++ ys)  sum xs + sum ys
sum-++-commute []       ys = refl
sum-++-commute (x  xs) ys = begin
  x + sum (xs ++ ys)     ≡⟨ P.cong (x +_) (sum-++-commute xs ys) 
  x + (sum xs + sum ys)  ≡⟨ P.sym (+-assoc x _ _) 
  (x + sum xs) + sum ys  
  where open P.≡-Reasoning

------------------------------------------------------------------------
-- replicate

module _ {a} {A : Set a} where

  length-replicate :  n {x : A}  length (replicate n x)  n
  length-replicate zero    = refl
  length-replicate (suc n) = P.cong suc (length-replicate n)

------------------------------------------------------------------------
-- scanr

module _ {a b} {A : Set a} {B : Set b} where

  scanr-defn :  (f : A  B  B) (e : B) 
               scanr f e  map (foldr f e)  tails
  scanr-defn f e []             = refl
  scanr-defn f e (x  [])       = refl
  scanr-defn f e (x  y  xs)
    with scanr f e (y  xs) | scanr-defn f e (y  xs)
  ... | []     | ()
  ... | z  zs | eq with ∷-injective eq
  ...   | z≡fy⦇f⦈xs , _ = P.cong₂  z  f x z ∷_) z≡fy⦇f⦈xs eq

------------------------------------------------------------------------
-- scanl

module _ {a b} {A : Set a} {B : Set b} where

  scanl-defn :  (f : A  B  A) (e : A) 
               scanl f e  map (foldl f e)  inits
  scanl-defn f e []       = refl
  scanl-defn f e (x  xs) = P.cong (e ∷_) (begin
     scanl f (f e x) xs
   ≡⟨ scanl-defn f (f e x) xs 
     map (foldl f (f e x)) (inits xs)
   ≡⟨ refl 
     map (foldl f e  (x ∷_)) (inits xs)
   ≡⟨ map-compose (inits xs) 
     map (foldl f e) (map (x ∷_) (inits xs))
   )
   where open P.≡-Reasoning

------------------------------------------------------------------------
-- tabulate

module _ {a} {A : Set a} where

  tabulate-cong :  {n} {f g : Fin n  A} 
                  f  g  tabulate f  tabulate g
  tabulate-cong {zero}  p = P.refl
  tabulate-cong {suc n} p = P.cong₂ _∷_ (p zero) (tabulate-cong (p  suc))

  tabulate-lookup :  (xs : List A)  tabulate (lookup xs)  xs
  tabulate-lookup []       = refl
  tabulate-lookup (x  xs) = P.cong (_ ∷_) (tabulate-lookup xs)

------------------------------------------------------------------------
-- take

module _ {a} {A : Set a} where

  length-take :  n (xs : List A)  length (take n xs)  n  (length xs)
  length-take zero    xs       = refl
  length-take (suc n) []       = refl
  length-take (suc n) (x  xs) = P.cong suc (length-take n xs)

------------------------------------------------------------------------
-- drop

module _ {a} {A : Set a} where

  length-drop :  n (xs : List A)  length (drop n xs)  length xs  n
  length-drop zero    xs       = refl
  length-drop (suc n) []       = refl
  length-drop (suc n) (x  xs) = length-drop n xs

  take++drop :  n (xs : List A)  take n xs ++ drop n xs  xs
  take++drop zero    xs       = refl
  take++drop (suc n) []       = refl
  take++drop (suc n) (x  xs) = P.cong (x ∷_) (take++drop n xs)

------------------------------------------------------------------------
-- splitAt

module _ {a} {A : Set a} where

  splitAt-defn :  n  splitAt {A = A} n  < take n , drop n >
  splitAt-defn zero    xs       = refl
  splitAt-defn (suc n) []       = refl
  splitAt-defn (suc n) (x  xs) with splitAt n xs | splitAt-defn n xs
  ... | (ys , zs) | ih = P.cong (Prod.map (x ∷_) id) ih

------------------------------------------------------------------------
-- takeWhile, dropWhile, and span

module _ {a p} {A : Set a} {P : Pred A p} (P? : Decidable P) where

  takeWhile++dropWhile :  xs  takeWhile P? xs ++ dropWhile P? xs  xs
  takeWhile++dropWhile []       = refl
  takeWhile++dropWhile (x  xs) with P? x
  ... | yes _ = P.cong (x ∷_) (takeWhile++dropWhile xs)
  ... | no  _ = refl

  span-defn : span P?  < takeWhile P? , dropWhile P? >
  span-defn []       = refl
  span-defn (x  xs) with P? x
  ... | yes _ = P.cong (Prod.map (x ∷_) id) (span-defn xs)
  ... | no  _ = refl

------------------------------------------------------------------------
-- filter

module _ {a p} {A : Set a} {P : A  Set p} (P? : Decidable P) where

  length-filter :  xs  length (filter P? xs)  length xs
  length-filter []       = z≤n
  length-filter (x  xs) with P? x
  ... | no  _ = ≤-step (length-filter xs)
  ... | yes _ = s≤s (length-filter xs)

  filter-all :  {xs}  All P xs  filter P? xs  xs
  filter-all {[]}     []         = refl
  filter-all {x  xs} (px  pxs) with P? x
  ... | no  ¬px = contradiction px ¬px
  ... | yes _   = P.cong (x ∷_) (filter-all pxs)

  filter-notAll :  xs  Any ( P) xs  length (filter P? xs) < length xs
  filter-notAll [] ()
  filter-notAll (x  xs) (here ¬px) with P? x
  ... | no  _  = s≤s (length-filter xs)
  ... | yes px = contradiction px ¬px
  filter-notAll (x  xs) (there any) with P? x
  ... | no  _ = ≤-step (filter-notAll xs any)
  ... | yes _ = s≤s (filter-notAll xs any)

  filter-some :  {xs}  Any P xs  0 < length (filter P? xs)
  filter-some {x  xs} (here px)   with P? x
  ... | yes _  = s≤s z≤n
  ... | no ¬px = contradiction px ¬px
  filter-some {x  xs} (there pxs) with P? x
  ... | yes _ = ≤-step (filter-some pxs)
  ... | no  _ = filter-some pxs

  filter-none :  {xs}  All ( P) xs  filter P? xs  []
  filter-none {[]}     []           = refl
  filter-none {x  xs} (¬px  ¬pxs) with P? x
  ... | no  _  = filter-none ¬pxs
  ... | yes px = contradiction px ¬px

  filter-complete :  {xs}  length (filter P? xs)  length xs 
                    filter P? xs  xs
  filter-complete {[]}     eq = refl
  filter-complete {x  xs} eq with P? x
  ... | no ¬px = contradiction eq (<⇒≢ (s≤s (length-filter xs)))
  ... | yes px = P.cong (x ∷_) (filter-complete (suc-injective eq))

------------------------------------------------------------------------
-- partition

module _ {a p} {A : Set a} {P : A  Set p} (P? : Decidable P) where

  partition-defn : partition P?  < filter P? , filter (∁? P?) >
  partition-defn []       = refl
  partition-defn (x  xs) with P? x
  ...  | yes Px = P.cong (Prod.map (x ∷_) id) (partition-defn xs)
  ...  | no ¬Px = P.cong (Prod.map id (x ∷_)) (partition-defn xs)

------------------------------------------------------------------------
-- reverse

module _ {a} {A : Set a} where

  unfold-reverse :  (x : A) xs  reverse (x  xs)  reverse xs ∷ʳ x
  unfold-reverse x xs = helper [ x ] xs
    where
    open P.≡-Reasoning
    helper : (xs ys : List A)  foldl (flip _∷_) xs ys  reverse ys ++ xs
    helper xs []       = refl
    helper xs (y  ys) = begin
      foldl (flip _∷_) (y  xs) ys  ≡⟨ helper (y  xs) ys 
      reverse ys ++ y  xs          ≡⟨ P.sym (++-assoc (reverse ys) _ _) 
      (reverse ys ∷ʳ y) ++ xs       ≡⟨ P.sym $ P.cong (_++ xs) (unfold-reverse y ys) 
      reverse (y  ys) ++ xs        

  reverse-++-commute : (xs ys : List A) 
                       reverse (xs ++ ys)  reverse ys ++ reverse xs
  reverse-++-commute []       ys = P.sym (++-identityʳ _)
  reverse-++-commute (x  xs) ys = begin
    reverse (x  xs ++ ys)               ≡⟨ unfold-reverse x (xs ++ ys) 
    reverse (xs ++ ys) ++ [ x ]          ≡⟨ P.cong (_++ [ x ]) (reverse-++-commute xs ys) 
    (reverse ys ++ reverse xs) ++ [ x ]  ≡⟨ ++-assoc (reverse ys) _ _ 
    reverse ys ++ (reverse xs ++ [ x ])  ≡⟨ P.sym $ P.cong (reverse ys ++_) (unfold-reverse x xs) 
    reverse ys ++ reverse (x  xs)       
    where open P.≡-Reasoning

  reverse-involutive : Involutive _≡_ (reverse {A = A})
  reverse-involutive [] = refl
  reverse-involutive (x  xs) = begin
    reverse (reverse (x  xs))   ≡⟨ P.cong reverse $ unfold-reverse x xs 
    reverse (reverse xs ∷ʳ x)    ≡⟨ reverse-++-commute (reverse xs) ([ x ]) 
    x  reverse (reverse (xs))   ≡⟨ P.cong (x ∷_) $ reverse-involutive xs 
    x  xs                       
    where open P.≡-Reasoning

  length-reverse : (xs : List A)  length (reverse xs)  length xs
  length-reverse []       = refl
  length-reverse (x  xs) = begin
    length (reverse (x  xs))   ≡⟨ P.cong length $ unfold-reverse x xs 
    length (reverse xs ∷ʳ x)    ≡⟨ length-++ (reverse xs) 
    length (reverse xs) + 1     ≡⟨ P.cong (_+ 1) (length-reverse xs) 
    length xs + 1               ≡⟨ +-comm _ 1 
    suc (length xs)             
    where open P.≡-Reasoning

module _ {a b} {A : Set a} {B : Set b} where

  reverse-map-commute : (f : A  B) (xs : List A) 
                        map f (reverse xs)  reverse (map f xs)
  reverse-map-commute f []       = refl
  reverse-map-commute f (x  xs) = begin
    map f (reverse (x  xs))   ≡⟨ P.cong (map f) $ unfold-reverse x xs 
    map f (reverse xs ∷ʳ x)    ≡⟨ map-++-commute f (reverse xs) ([ x ]) 
    map f (reverse xs) ∷ʳ f x  ≡⟨ P.cong (_∷ʳ f x) $ reverse-map-commute f xs 
    reverse (map f xs) ∷ʳ f x  ≡⟨ P.sym $ unfold-reverse (f x) (map f xs) 
    reverse (map f (x  xs))   
    where open P.≡-Reasoning

  reverse-foldr :  (f : A  B  B) x ys 
                  foldr f x (reverse ys)  foldl (flip f) x ys
  reverse-foldr f x []       = refl
  reverse-foldr f x (y  ys) = begin
    foldr f x (reverse (y  ys)) ≡⟨ P.cong (foldr f x) (unfold-reverse y ys) 
    foldr f x ((reverse ys) ∷ʳ y) ≡⟨ foldr-∷ʳ f x y (reverse ys) 
    foldr f (f y x) (reverse ys)  ≡⟨ reverse-foldr f (f y x) ys 
    foldl (flip f) (f y x) ys     
    where open P.≡-Reasoning

  reverse-foldl :  (f : A  B  A) x ys 
                  foldl f x (reverse ys)  foldr (flip f) x ys
  reverse-foldl f x []       = refl
  reverse-foldl f x (y  ys) = begin
    foldl f x (reverse (y  ys)) ≡⟨ P.cong (foldl f x) (unfold-reverse y ys) 
    foldl f x ((reverse ys) ∷ʳ y) ≡⟨ foldl-∷ʳ f x y (reverse ys) 
    f (foldl f x (reverse ys)) y ≡⟨ P.cong (flip f y) (reverse-foldl f x ys) 
    f (foldr (flip f) x ys) y    
    where open P.≡-Reasoning

------------------------------------------------------------------------
-- _∷ʳ_

module _ {a} {A : Set a} where

  ∷ʳ-injective :  {x y : A} xs ys 
                 xs ∷ʳ x  ys ∷ʳ y  xs  ys × x  y
  ∷ʳ-injective []          []          refl = (refl , refl)
  ∷ʳ-injective (x  xs)    (y   ys)   eq   with ∷-injective eq
  ... | refl , eq′ = Prod.map (P.cong (x ∷_)) id (∷ʳ-injective xs ys eq′)
  ∷ʳ-injective []          (_  [])    ()
  ∷ʳ-injective []          (_  _  _) ()
  ∷ʳ-injective (_  [])    []          ()
  ∷ʳ-injective (_  _  _) []          ()

  ∷ʳ-injectiveˡ :  {x y : A} (xs ys : List A)  xs ∷ʳ x  ys ∷ʳ y  xs  ys
  ∷ʳ-injectiveˡ xs ys eq = proj₁ (∷ʳ-injective xs ys eq)

  ∷ʳ-injectiveʳ :  {x y : A} (xs ys : List A)  xs ∷ʳ x  ys ∷ʳ y  x  y
  ∷ʳ-injectiveʳ xs ys eq = proj₂ (∷ʳ-injective xs ys eq)

------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 0.15

gfilter-just      = mapMaybe-just
{-# WARNING_ON_USAGE gfilter-just
"Warning: gfilter-just was deprecated in v0.15.
Please use mapMaybe-just instead."
#-}
gfilter-nothing   = mapMaybe-nothing
{-# WARNING_ON_USAGE gfilter-nothing
"Warning: gfilter-nothing was deprecated in v0.15.
Please use mapMaybe-nothing instead."
#-}
gfilter-concatMap = mapMaybe-concatMap
{-# WARNING_ON_USAGE gfilter-concatMap
"Warning: gfilter-concatMap was deprecated in v0.15.
Please use mapMaybe-concatMap instead."
#-}
length-gfilter    = length-mapMaybe
{-# WARNING_ON_USAGE length-gfilter
"Warning: length-gfilter was deprecated in v0.15.
Please use length-mapMaybe instead."
#-}
right-identity-unique = ++-identityʳ-unique
{-# WARNING_ON_USAGE right-identity-unique
"Warning: right-identity-unique was deprecated in v0.15.
Please use ++-identityʳ-unique instead."
#-}
left-identity-unique  = ++-identityˡ-unique
{-# WARNING_ON_USAGE left-identity-unique
"Warning: left-identity-unique was deprecated in v0.15.
Please use ++-identityˡ-unique instead."
#-}

-- Version 0.16

module _ {a} {A : Set a} (p : A  Bool) where

  boolTakeWhile++boolDropWhile :  xs  boolTakeWhile p xs ++ boolDropWhile p xs  xs
  boolTakeWhile++boolDropWhile []       = refl
  boolTakeWhile++boolDropWhile (x  xs) with p x
  ... | true  = P.cong (x ∷_) (boolTakeWhile++boolDropWhile xs)
  ... | false = refl
  {-# WARNING_ON_USAGE boolTakeWhile++boolDropWhile
  "Warning: boolTakeWhile and boolDropWhile were deprecated in v0.16.
  Please use takeWhile and dropWhile instead."
  #-}
  boolSpan-defn : boolSpan p  < boolTakeWhile p , boolDropWhile p >
  boolSpan-defn []       = refl
  boolSpan-defn (x  xs) with p x
  ... | true  = P.cong (Prod.map (x ∷_) id) (boolSpan-defn xs)
  ... | false = refl
  {-# WARNING_ON_USAGE boolSpan-defn
  "Warning: boolSpan, boolTakeWhile and boolDropWhile were deprecated in v0.16.
  Please use span, takeWhile and dropWhile instead."
  #-}
  length-boolFilter :  xs  length (boolFilter p xs)  length xs
  length-boolFilter xs =
    length-mapMaybe  x  if p x then just x else nothing) xs
  {-# WARNING_ON_USAGE length-boolFilter
  "Warning: boolFilter was deprecated in v0.16.
  Please use filter instead."
  #-}
  boolPartition-defn : boolPartition p  < boolFilter p , boolFilter (not  p) >
  boolPartition-defn []       = refl
  boolPartition-defn (x  xs) with p x
  ...  | true  = P.cong (Prod.map (x ∷_) id) (boolPartition-defn xs)
  ...  | false = P.cong (Prod.map id (x ∷_)) (boolPartition-defn xs)
  {-# WARNING_ON_USAGE boolPartition-defn
  "Warning: boolPartition and boolFilter were deprecated in v0.16.
  Please use partition and filter instead."
  #-}

module _ {a p} {A : Set a} (P : A  Set p) (P? : Decidable P) where

  boolFilter-filters :  xs  All P (boolFilter (⌊_⌋  P?) xs)
  boolFilter-filters []       = []
  boolFilter-filters (x  xs) with P? x
  ... | yes px = px  boolFilter-filters xs
  ... | no ¬px = boolFilter-filters xs
  {-# WARNING_ON_USAGE boolFilter-filters
  "Warning: boolFilter was deprecated in v0.16.
  Please use filter instead."
  #-}

-- Version 0.17

idIsFold  = id-is-foldr
{-# WARNING_ON_USAGE idIsFold
"Warning: idIsFold was deprecated in v0.17.
Please use id-is-foldr instead."
#-}
++IsFold  = ++-is-foldr
{-# WARNING_ON_USAGE ++IsFold
"Warning: ++IsFold was deprecated in v0.17.
Please use ++-is-foldr instead."
#-}
mapIsFold = map-is-foldr
{-# WARNING_ON_USAGE mapIsFold
"Warning: mapIsFold was deprecated in v0.17.
Please use map-is-foldr instead."
#-}