module Data.List.All where
open import Data.List.Base as List using (List; []; _∷_)
open import Data.List.Any as Any using (here; there)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Product as Prod using (_,_)
open import Function
open import Level
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Unary hiding (_∈_)
open import Relation.Binary.PropositionalEquality as P
infixr 5 _∷_
data All {a p} {A : Set a}
(P : A → Set p) : List A → Set (p ⊔ a) where
[] : All P []
_∷_ : ∀ {x xs} (px : P x) (pxs : All P xs) → All P (x ∷ xs)
head : ∀ {a p} {A : Set a} {P : A → Set p} {x xs} →
All P (x ∷ xs) → P x
head (px ∷ pxs) = px
tail : ∀ {a p} {A : Set a} {P : A → Set p} {x xs} →
All P (x ∷ xs) → All P xs
tail (px ∷ pxs) = pxs
lookup : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} →
All P xs → (∀ {x} → x ∈ xs → P x)
lookup [] ()
lookup (px ∷ pxs) (here refl) = px
lookup (px ∷ pxs) (there x∈xs) = lookup pxs x∈xs
tabulate : ∀ {a p} {A : Set a} {P : A → Set p} {xs} →
(∀ {x} → x ∈ xs → P x) → All P xs
tabulate {xs = []} hyp = []
tabulate {xs = x ∷ xs} hyp = hyp (here refl) ∷ tabulate (hyp ∘ there)
map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} →
P ⊆ Q → All P ⊆ All Q
map g [] = []
map g (px ∷ pxs) = g px ∷ map g pxs
zip : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} →
All P ∩ All Q ⊆ All (P ∩ Q)
zip ([] , []) = []
zip (px ∷ pxs , qx ∷ qxs) = (px , qx) ∷ zip (pxs , qxs)
unzip : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} →
All (P ∩ Q) ⊆ All P ∩ All Q
unzip [] = [] , []
unzip (pqx ∷ pqxs) = Prod.zip _∷_ _∷_ pqx (unzip pqxs)
module _ {a p} {A : Set a} {P : A → Set p} where
all : Decidable P → Decidable (All P)
all p [] = yes []
all p (x ∷ xs) with p x
... | yes px = Dec.map′ (px ∷_) tail (all p xs)
... | no ¬px = no (¬px ∘ head)
universal : Universal P → Universal (All P)
universal u [] = []
universal u (x ∷ xs) = u x ∷ universal u xs
irrelevant : Irrelevant P → Irrelevant (All P)
irrelevant irr [] [] = P.refl
irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) =
P.cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂)
satisfiable : Satisfiable (All P)
satisfiable = [] , []