------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to propositional list membership
------------------------------------------------------------------------

-- This module does not  treat the general variant of list membership,
-- parametrised on a setoid, only the variant where the equality is
-- fixed to be propositional equality.

module Data.List.Membership.Propositional.Properties where

open import Algebra using (CommutativeSemiring)
open import Algebra.FunctionProperties using (Op₂; Selective)
open import Category.Monad using (RawMonad)
open import Data.Bool.Base using (Bool; false; true; T)
open import Data.Fin using (Fin)
open import Data.List as List
open import Data.List.Any as Any using (Any; here; there)
open import Data.List.Any.Properties
open import Data.List.Membership.Propositional
import Data.List.Membership.Setoid.Properties as Membershipₛ
open import Data.List.Relation.Equality.Propositional
  using (_≋_; ≡⇒≋; ≋⇒≡)
open import Data.List.Categorical using (monad)
open import Data.Nat using (; zero; suc; pred; s≤s; _≤_; _<_; _≤?_)
open import Data.Nat.Properties
open import Data.Product hiding (map)
open import Data.Product.Relation.Pointwise.NonDependent using (_×-cong_)
import Data.Product.Relation.Pointwise.Dependent as Σ
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalence)
open import Function.Injection using (Injection; Injective; _↣_)
open import Function.Inverse as Inv using (_↔_; module Inverse)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Relation.Binary hiding (Decidable)
open import Relation.Binary.PropositionalEquality as P
  using (_≡_; _≢_; refl; sym; trans; cong; subst; →-to-⟶; _≗_)
import Relation.Binary.Properties.DecTotalOrder as DTOProperties
open import Relation.Unary using (_⟨×⟩_; Decidable)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Negation

private
  open module ListMonad {} = RawMonad (monad { = })

------------------------------------------------------------------------
-- Publicly re-export properties from Core

open import Data.List.Membership.Propositional.Properties.Core public

------------------------------------------------------------------------
-- Equality

module _ {a} {A : Set a} where

  ∈-resp-≋ :  {x}  (x ∈_) Respects _≋_
  ∈-resp-≋ = Membershipₛ.∈-resp-≋ (P.setoid A)

  ∉-resp-≋ :  {x}  (x ∉_) Respects _≋_
  ∉-resp-≋ = Membershipₛ.∉-resp-≋ (P.setoid A)

------------------------------------------------------------------------
-- mapWith∈

module _ {a b} {A : Set a} {B : Set b} where

  mapWith∈-cong :  (xs : List A)  (f g :  {x}  x  xs  B) 
                  (∀ {x}  (x∈xs : x  xs)  f x∈xs  g x∈xs) 
                  mapWith∈ xs f  mapWith∈ xs g
  mapWith∈-cong []       f g cong = refl
  mapWith∈-cong (x  xs) f g cong = P.cong₂ _∷_ (cong (here refl))
    (mapWith∈-cong xs (f  there) (g  there) (cong  there))

  mapWith∈≗map :  f xs  mapWith∈ xs  {x} _  f x)  map f xs
  mapWith∈≗map f xs =
    ≋⇒≡ (Membershipₛ.mapWith∈≗map (P.setoid A) (P.setoid B) f xs)

------------------------------------------------------------------------
-- map

module _ {a b} {A : Set a} {B : Set b} {f : A  B} where

  ∈-map⁺ :  {x xs}  x  xs  f x  map f xs
  ∈-map⁺ = Membershipₛ.∈-map⁺ (P.setoid A) (P.setoid B) (P.cong f)

  ∈-map⁻ :  {y xs}  y  map f xs   λ x  x  xs × y  f x
  ∈-map⁻ = Membershipₛ.∈-map⁻ (P.setoid A) (P.setoid B)

  map-∈↔ :  {y xs}  ( λ x  x  xs × y  f x)  y  map f xs
  map-∈↔ {y} {xs} =
    ( λ x  x  xs × y  f x)   ↔⟨ Any↔ 
    Any  x  y  f x) xs       ↔⟨ map↔ 
    y  List.map f xs            
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- _++_

module _ {a} (A : Set a) {v : A} where

  ∈-++⁺ˡ :  {xs ys}  v  xs  v  xs ++ ys
  ∈-++⁺ˡ = Membershipₛ.∈-++⁺ˡ (P.setoid A)

  ∈-++⁺ʳ :  xs {ys}  v  ys  v  xs ++ ys
  ∈-++⁺ʳ = Membershipₛ.∈-++⁺ʳ (P.setoid A)

  ∈-++⁻ :  xs {ys}  v  xs ++ ys  (v  xs)  (v  ys)
  ∈-++⁻ = Membershipₛ.∈-++⁻ (P.setoid A)

  ∈-insert :  xs {ys}  v  xs ++ [ v ] ++ ys
  ∈-insert xs = Membershipₛ.∈-insert (P.setoid A) xs refl

  ∈-∃++ :  {xs}  v  xs  ∃₂ λ ys zs  xs  ys ++ [ v ] ++ zs
  ∈-∃++ v∈xs with Membershipₛ.∈-∃++ (P.setoid A) v∈xs
  ... | ys , zs , _ , refl , eq = ys , zs , ≋⇒≡ eq

------------------------------------------------------------------------
-- concat

module _ {a} {A : Set a} {v : A} where

  ∈-concat⁺ :  {xss}  Any (v ∈_) xss  v  concat xss
  ∈-concat⁺ = Membershipₛ.∈-concat⁺ (P.setoid A)

  ∈-concat⁻ :  xss  v  concat xss  Any (v ∈_) xss
  ∈-concat⁻ = Membershipₛ.∈-concat⁻ (P.setoid A)

  ∈-concat⁺′ :  {vs xss}  v  vs  vs  xss  v  concat xss
  ∈-concat⁺′ v∈vs vs∈xss =
    Membershipₛ.∈-concat⁺′ (P.setoid A) v∈vs (Any.map ≡⇒≋ vs∈xss)

  ∈-concat⁻′ :  xss  v  concat xss   λ xs  v  xs × xs  xss
  ∈-concat⁻′ xss v∈c with Membershipₛ.∈-concat⁻′ (P.setoid A) xss v∈c
  ... | xs , v∈xs , xs∈xss = xs , v∈xs , Any.map ≋⇒≡ xs∈xss

  concat-∈↔ :  {xss : List (List A)} 
              ( λ xs  v  xs × xs  xss)  v  concat xss
  concat-∈↔ {xss} =
    ( λ xs  v  xs × xs  xss)  ↔⟨ Σ.cong Inv.id $ ×-comm _ _ 
    ( λ xs  xs  xss × v  xs)  ↔⟨ Any↔ 
    Any (Any (v ≡_)) xss          ↔⟨ concat↔ 
    v  concat xss                
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- applyUpTo

module _ {a} {A : Set a} where

  ∈-applyUpTo⁺ :  (f :   A) {i n}  i < n  f i  applyUpTo f n
  ∈-applyUpTo⁺ = Membershipₛ.∈-applyUpTo⁺ (P.setoid A)

  ∈-applyUpTo⁻ :  {v} f {n}  v  applyUpTo f n 
                  λ i  i < n × v  f i
  ∈-applyUpTo⁻ = Membershipₛ.∈-applyUpTo⁻ (P.setoid A)

------------------------------------------------------------------------
-- tabulate

module _ {a} {A : Set a} where

  ∈-tabulate⁺ :  {n} {f : Fin n  A} i  f i  tabulate f
  ∈-tabulate⁺ = Membershipₛ.∈-tabulate⁺ (P.setoid A)

  ∈-tabulate⁻ :  {n} {f : Fin n  A} {v} 
                v  tabulate f   λ i  v  f i
  ∈-tabulate⁻ = Membershipₛ.∈-tabulate⁻ (P.setoid A)

------------------------------------------------------------------------
-- filter

module _ {a p} {A : Set a} {P : A  Set p} (P? : Decidable P) where

  ∈-filter⁺ :  {x xs}  x  xs  P x  x  filter P? xs
  ∈-filter⁺ = Membershipₛ.∈-filter⁺ (P.setoid A) P? (P.subst P)

  ∈-filter⁻ :  {v xs}  v  filter P? xs  v  xs × P v
  ∈-filter⁻ = Membershipₛ.∈-filter⁻ (P.setoid A) P? (P.subst P)

------------------------------------------------------------------------
-- _>>=_

module _ {} {A B : Set } where

  >>=-∈↔ :  {xs} {f : A  List B} {y} 
           ( λ x  x  xs × y  f x)  y  (xs >>= f)
  >>=-∈↔ {xs = xs} {f} {y} =
    ( λ x  x  xs × y  f x)  ↔⟨ Any↔ 
    Any (Any (y ≡_)  f) xs     ↔⟨ >>=↔ 
    y  (xs >>= f)              
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- _⊛_

module _ {} {A B : Set } where

  ⊛-∈↔ :  (fs : List (A  B)) {xs y} 
         (∃₂ λ f x  f  fs × x  xs × y  f x)  y  (fs  xs)
  ⊛-∈↔ fs {xs} {y} =
    (∃₂ λ f x  f  fs × x  xs × y  f x)       ↔⟨ Σ.cong Inv.id (∃∃↔∃∃ _) 
    ( λ f  f  fs ×  λ x  x  xs × y  f x)  ↔⟨ Σ.cong Inv.id ((_ )  _×-cong_  Any↔) 
    ( λ f  f  fs × Any (_≡_ y  f) xs)        ↔⟨ Any↔ 
    Any  f  Any (_≡_ y  f) xs) fs            ↔⟨ ⊛↔ 
    y  (fs  xs)                                
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- _⊗_

module _ {} {A B : Set } where

  ⊗-∈↔ :  {xs ys} {x : A} {y : B} 
         (x  xs × y  ys)  (x , y)  (xs  ys)
  ⊗-∈↔ {xs} {ys} {x} {y} =
    (x  xs × y  ys)             ↔⟨ ⊗↔′ 
    Any (x ≡_ ⟨×⟩ y ≡_) (xs  ys) ↔⟨ Any-cong ×-≡×≡↔≡,≡ (_ ) 
    (x , y)  (xs  ys)           
    where
    open Related.EquationalReasoning

------------------------------------------------------------------------
-- length

module _ {a} {A : Set a} where

  ∈-length :  {x xs}  x  xs  1  length xs
  ∈-length = Membershipₛ.∈-length (P.setoid A)

------------------------------------------------------------------------
-- lookup

module _ {a} {A : Set a} where

  ∈-lookup :  xs i  lookup xs i  xs
  ∈-lookup = Membershipₛ.∈-lookup (P.setoid A)

------------------------------------------------------------------------
-- foldr

module _ {a} {A : Set a} {_•_ : Op₂ A} where

  foldr-selective : Selective _≡_ _•_   e xs 
                    (foldr _•_ e xs  e)  (foldr _•_ e xs  xs)
  foldr-selective = Membershipₛ.foldr-selective (P.setoid A)

------------------------------------------------------------------------
-- Other properties

-- Only a finite number of distinct elements can be members of a
-- given list.

module _ {a} {A : Set a} where

  finite : (f :   A)   xs  ¬ (∀ i  Injection.to f ⟨$⟩ i  xs)
  finite inj []       fᵢ∈[]   = ¬Any[] (fᵢ∈[] 0)
  finite inj (x  xs) fᵢ∈x∷xs = excluded-middle helper
    where
    open Injection inj renaming (injective to f-inj)

    f :   A
    f = to ⟨$⟩_

    not-x :  {i}  f i  x  f i  xs
    not-x {i} fᵢ≢x with fᵢ∈x∷xs i
    ... | here  fᵢ≡x  = contradiction fᵢ≡x fᵢ≢x
    ... | there fᵢ∈xs = fᵢ∈xs

    helper : ¬ Dec ( λ i  f i  x)
    helper (no fᵢ≢x)        = finite inj  xs  i  not-x (fᵢ≢x  _,_ i))
    helper (yes (i , fᵢ≡x)) = finite f′-inj xs f′ⱼ∈xs
      where
      f′ :   A
      f′ j with i ≤? j
      ... | yes i≤j = f (suc j)
      ... | no  i≰j = f j

      ∈-if-not-i :  {j}  i  j  f j  xs
      ∈-if-not-i i≢j = not-x (i≢j  f-inj  trans fᵢ≡x  sym)

      lemma :  {k j}  i  j  ¬ (i  k)  suc j  k
      lemma i≤j i≰1+j refl = i≰1+j (≤-step i≤j)

      f′ⱼ∈xs :  j  f′ j  xs
      f′ⱼ∈xs j with i ≤? j
      ... | yes i≤j = ∈-if-not-i (<⇒≢ (s≤s i≤j))
      ... | no  i≰j = ∈-if-not-i (<⇒≢ (≰⇒> i≰j)  sym)

      f′-injective′ : Injective {B = P.setoid A} (→-to-⟶ f′)
      f′-injective′ {j} {k} eq with i ≤? j | i ≤? k
      ... | yes _   | yes _   = P.cong pred (f-inj eq)
      ... | yes i≤j | no  i≰k = contradiction (f-inj eq) (lemma i≤j i≰k)
      ... | no  i≰j | yes i≤k = contradiction (f-inj eq) (lemma i≤k i≰j  sym)
      ... | no  _   | no  _   = f-inj eq

      f′-inj = record
        { to        = →-to-⟶ f′
        ; injective = f′-injective′
        }

------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 0.15

boolFilter-∈ :  {a} {A : Set a} (p : A  Bool) (xs : List A) {x} 
           x  xs  p x  true  x  boolFilter p xs
boolFilter-∈ p []       ()          _
boolFilter-∈ p (x  xs) (here refl) px≡true rewrite px≡true = here refl
boolFilter-∈ p (y  xs) (there pxs) px≡true with p y
... | true  = there (boolFilter-∈ p xs pxs px≡true)
... | false =        boolFilter-∈ p xs pxs px≡true
{-# WARNING_ON_USAGE boolFilter-∈
"Warning: boolFilter was deprecated in v0.15.
Please use filter instead."
#-}

-- Version 0.16

filter-∈ = ∈-filter⁺
{-# WARNING_ON_USAGE filter-∈
"Warning: filter-∈ was deprecated in v0.16.
Please use ∈-filter⁺ instead."
#-}