Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to Fin, and operations making use of these
-- properties (or other properties not available in Data.Fin)
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}
{-# OPTIONS --warn=noUserWarning #-} -- for deprecated _≺_ and _≻toℕ_ (issue #1726)

module Data.Fin.Properties where

open import Axiom.Extensionality.Propositional
open import Algebra.Definitions using (Involutive)
open import Effect.Applicative using (RawApplicative)
open import Effect.Functor using (RawFunctor)
open import Data.Bool.Base using (Bool; true; false; not; _∧_; _∨_)
open import Data.Empty using (; ⊥-elim)
open import Data.Fin.Base
open import Data.Fin.Patterns
open import Data.Nat.Base as 
  using (; zero; suc; s≤s; z≤n; z<s; s<s; s<s⁻¹; _∸_; _^_)
import Data.Nat.Properties as 
open import Data.Unit.Base using (; tt)
open import Data.Product.Base as Product
  using (; ∃₂; _×_; _,_; map; proj₁; proj₂; uncurry; <_,_>)
open import Data.Product.Properties using (,-injective)
open import Data.Product.Algebra using (×-cong)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]; [_,_]′)
open import Data.Sum.Properties using ([,]-map; [,]-∘)
open import Function.Base using (_∘_; id; _$_; flip)
open import Function.Bundles using (Injection; _↣_; _⇔_; _↔_; mk⇔; mk↔ₛ′)
open import Function.Definitions using (Injective; Surjective)
open import Function.Consequences.Propositional using (contraInjective)
open import Function.Construct.Composition as Comp hiding (injective)
open import Level using (Level)
open import Relation.Binary.Definitions as B hiding (Decidable)
open import Relation.Binary.Core using (_⇒_; _Preserves_⟶_)
open import Relation.Binary.Bundles
  using (Preorder; Setoid; DecSetoid; Poset; TotalOrder; DecTotalOrder; StrictPartialOrder; StrictTotalOrder)
open import Relation.Binary.Structures
  using (IsDecEquivalence; IsPreorder; IsPartialOrder; IsTotalOrder; IsDecTotalOrder; IsStrictPartialOrder; IsStrictTotalOrder)
open import Relation.Binary.PropositionalEquality.Core as 
  using (_≡_; _≢_; refl; sym; trans; cong; cong₂; subst; _≗_)
open import Relation.Binary.PropositionalEquality.Properties as 
  using (module ≡-Reasoning)
open import Relation.Nullary.Decidable as Dec
  using (Dec; _because_; yes; no; _×-dec_; _⊎-dec_; map′)
open import Relation.Nullary.Negation.Core using (¬_; contradiction)
open import Relation.Nullary.Reflects using (Reflects; invert)
open import Relation.Unary as U
  using (U; Pred; Decidable; _⊆_; Satisfiable; Universal)
open import Relation.Unary.Properties using (U?)

private
  variable
    a : Level
    A : Set a
    m n o : 
    i j : Fin n

------------------------------------------------------------------------
-- Fin
------------------------------------------------------------------------

¬Fin0 : ¬ Fin 0
¬Fin0 ()

nonZeroIndex : Fin n  ℕ.NonZero n
nonZeroIndex {n = suc _} _ = _

------------------------------------------------------------------------
-- Bundles

0↔⊥ : Fin 0  
0↔⊥ = mk↔ₛ′ ¬Fin0  ())  ())  ())

1↔⊤ : Fin 1  
1↔⊤ = mk↔ₛ′  { 0F  tt })  { tt  0F })  { tt  refl }) λ { 0F  refl }

2↔Bool : Fin 2  Bool
2↔Bool = mk↔ₛ′  { 0F  false; 1F  true })  { false  0F ; true  1F })
   { false  refl ; true  refl })  { 0F  refl ; 1F  refl })

------------------------------------------------------------------------
-- Properties of _≡_
------------------------------------------------------------------------

0≢1+n : zero  Fin.suc i
0≢1+n ()

suc-injective : Fin.suc i  suc j  i  j
suc-injective refl = refl

infix 4 _≟_

_≟_ : DecidableEquality (Fin n)
zero   zero  = yes refl
zero   suc y = no λ()
suc x  zero  = no λ()
suc x  suc y = map′ (cong suc) suc-injective (x  y)

------------------------------------------------------------------------
-- Structures

≡-isDecEquivalence : IsDecEquivalence {A = Fin n} _≡_
≡-isDecEquivalence = record
  { isEquivalence = ≡.isEquivalence
  ; _≟_           = _≟_
  }

------------------------------------------------------------------------
-- Bundles

≡-preorder :   Preorder _ _ _
≡-preorder n = ≡.preorder (Fin n)

≡-setoid :   Setoid _ _
≡-setoid n = ≡.setoid (Fin n)

≡-decSetoid :   DecSetoid _ _
≡-decSetoid n = record
  { isDecEquivalence = ≡-isDecEquivalence {n}
  }

------------------------------------------------------------------------
-- toℕ
------------------------------------------------------------------------

toℕ-injective : toℕ i  toℕ j  i  j
toℕ-injective {zero}  {}      {}      _
toℕ-injective {suc n} {zero}  {zero}  eq = refl
toℕ-injective {suc n} {suc i} {suc j} eq =
  cong suc (toℕ-injective (cong ℕ.pred eq))

toℕ-strengthen :  (i : Fin n)  toℕ (strengthen i)  toℕ i
toℕ-strengthen zero    = refl
toℕ-strengthen (suc i) = cong suc (toℕ-strengthen i)

------------------------------------------------------------------------
-- toℕ-↑ˡ: "i" ↑ˡ n = "i" in Fin (m + n)
------------------------------------------------------------------------

toℕ-↑ˡ :  (i : Fin m) n  toℕ (i ↑ˡ n)  toℕ i
toℕ-↑ˡ zero    n = refl
toℕ-↑ˡ (suc i) n = cong suc (toℕ-↑ˡ i n)

↑ˡ-injective :  n (i j : Fin m)  i ↑ˡ n  j ↑ˡ n  i  j
↑ˡ-injective n zero zero refl = refl
↑ˡ-injective n (suc i) (suc j) eq =
  cong suc (↑ˡ-injective n i j (suc-injective eq))

------------------------------------------------------------------------
-- toℕ-↑ʳ: n ↑ʳ "i" = "n + i" in Fin (n + m)
------------------------------------------------------------------------

toℕ-↑ʳ :  n (i : Fin m)  toℕ (n ↑ʳ i)  n ℕ.+ toℕ i
toℕ-↑ʳ zero    i = refl
toℕ-↑ʳ (suc n) i = cong suc (toℕ-↑ʳ n i)

↑ʳ-injective :  n (i j : Fin m)  n ↑ʳ i  n ↑ʳ j  i  j
↑ʳ-injective zero i i refl = refl
↑ʳ-injective (suc n) i j eq = ↑ʳ-injective n i j (suc-injective eq)

------------------------------------------------------------------------
-- toℕ and the ordering relations
------------------------------------------------------------------------

toℕ<n :  (i : Fin n)  toℕ i ℕ.< n
toℕ<n {n = suc _} zero    = z<s
toℕ<n {n = suc _} (suc i) = s<s (toℕ<n i)

toℕ≤pred[n] :  (i : Fin n)  toℕ i ℕ.≤ ℕ.pred n
toℕ≤pred[n] zero                 = z≤n
toℕ≤pred[n] (suc {n = suc n} i)  = s≤s (toℕ≤pred[n] i)

toℕ≤n :  (i : Fin n)  toℕ i ℕ.≤ n
toℕ≤n {suc n} i = ℕ.m≤n⇒m≤1+n (toℕ≤pred[n] i)

-- A simpler implementation of toℕ≤pred[n],
-- however, with a different reduction behavior.
-- If no one needs the reduction behavior of toℕ≤pred[n],
-- it can be removed in favor of toℕ≤pred[n]′.
toℕ≤pred[n]′ :  (i : Fin n)  toℕ i ℕ.≤ ℕ.pred n
toℕ≤pred[n]′ i = ℕ.<⇒≤pred (toℕ<n i)

toℕ-mono-< : i < j  toℕ i ℕ.< toℕ j
toℕ-mono-< i<j = i<j

toℕ-mono-≤ : i  j  toℕ i ℕ.≤ toℕ j
toℕ-mono-≤ i≤j = i≤j

toℕ-cancel-≤ : toℕ i ℕ.≤ toℕ j  i  j
toℕ-cancel-≤ i≤j = i≤j

toℕ-cancel-< : toℕ i ℕ.< toℕ j  i < j
toℕ-cancel-< i<j = i<j

------------------------------------------------------------------------
-- fromℕ
------------------------------------------------------------------------

toℕ-fromℕ :  n  toℕ (fromℕ n)  n
toℕ-fromℕ zero    = refl
toℕ-fromℕ (suc n) = cong suc (toℕ-fromℕ n)

fromℕ-toℕ :  (i : Fin n)  fromℕ (toℕ i)  strengthen i
fromℕ-toℕ zero    = refl
fromℕ-toℕ (suc i) = cong suc (fromℕ-toℕ i)

≤fromℕ :  (i : Fin (suc n))  i  fromℕ n
≤fromℕ {n = n} i rewrite toℕ-fromℕ n = ℕ.s≤s⁻¹ (toℕ<n i)

------------------------------------------------------------------------
-- fromℕ<
------------------------------------------------------------------------

fromℕ<-toℕ :  (i : Fin n) .(i<n : toℕ i ℕ.< n)  fromℕ< i<n  i
fromℕ<-toℕ zero    _   = refl
fromℕ<-toℕ (suc i) i<n = cong suc (fromℕ<-toℕ i (ℕ.s<s⁻¹ i<n))

toℕ-fromℕ< :  .(m<n : m ℕ.< n)  toℕ (fromℕ< m<n)  m
toℕ-fromℕ< {m = zero}  {n = suc _} _   = refl
toℕ-fromℕ< {m = suc m} {n = suc _} m<n = cong suc (toℕ-fromℕ< (ℕ.s<s⁻¹ m<n))

-- fromℕ is a special case of fromℕ<.
fromℕ-def :  n  fromℕ n  fromℕ< ℕ.≤-refl
fromℕ-def zero    = refl
fromℕ-def (suc n) = cong suc (fromℕ-def n)

fromℕ<-cong :  m n {o}  m  n  .(m<o : m ℕ.< o) .(n<o : n ℕ.< o) 
              fromℕ< m<o  fromℕ< n<o
fromℕ<-cong 0       0                   _ _   _   = refl
fromℕ<-cong (suc _) (suc _) {o = suc _} r m<n n<o
  = cong suc (fromℕ<-cong _ _ (ℕ.suc-injective r) (ℕ.s<s⁻¹ m<n) (ℕ.s<s⁻¹ n<o))

fromℕ<-injective :  m n {o}  .(m<o : m ℕ.< o) .(n<o : n ℕ.< o) 
                   fromℕ< m<o  fromℕ< n<o  m  n
fromℕ<-injective 0       0                   _   _   _  = refl
fromℕ<-injective 0       (suc _) {o = suc _} _ _ ()
fromℕ<-injective (suc _) (suc _) {o = suc _} m<n n<o r
  = cong suc (fromℕ<-injective _ _ (ℕ.s<s⁻¹ m<n) (ℕ.s<s⁻¹ n<o) (suc-injective r))

------------------------------------------------------------------------
-- fromℕ<″
------------------------------------------------------------------------

fromℕ<≡fromℕ<″ :  (m<n : m ℕ.< n) (m<″n : m ℕ.<″ n) 
                 fromℕ< m<n  fromℕ<″ m m<″n
fromℕ<≡fromℕ<″ {m = zero}  {n = suc _} _ _ = refl
fromℕ<≡fromℕ<″ {m = suc m} {n = suc _} m<n m<″n
  = cong suc (fromℕ<≡fromℕ<″ (ℕ.s<s⁻¹ m<n) (ℕ.s<″s⁻¹ m<″n))

toℕ-fromℕ<″ :  (m<n : m ℕ.<″ n)  toℕ (fromℕ<″ m m<n)  m
toℕ-fromℕ<″ {m} {n} m<n = begin
  toℕ (fromℕ<″ m m<n)  ≡⟨ cong toℕ (sym (fromℕ<≡fromℕ<″ (ℕ.≤″⇒≤ m<n) m<n)) 
  toℕ (fromℕ< _)       ≡⟨ toℕ-fromℕ< (ℕ.≤″⇒≤ m<n) 
  m                    
  where open ≡-Reasoning

------------------------------------------------------------------------
-- Properties of cast
------------------------------------------------------------------------

toℕ-cast :  .(eq : m  n) (k : Fin m)  toℕ (cast eq k)  toℕ k
toℕ-cast {n = suc n} eq zero    = refl
toℕ-cast {n = suc n} eq (suc k) = cong suc (toℕ-cast (cong ℕ.pred eq) k)

cast-is-id : .(eq : m  m) (k : Fin m)  cast eq k  k
cast-is-id eq zero    = refl
cast-is-id eq (suc k) = cong suc (cast-is-id (ℕ.suc-injective eq) k)

subst-is-cast : (eq : m  n) (k : Fin m)  subst Fin eq k  cast eq k
subst-is-cast refl k = sym (cast-is-id refl k)

cast-trans : .(eq₁ : m  n) .(eq₂ : n  o) (k : Fin m) 
             cast eq₂ (cast eq₁ k)  cast (trans eq₁ eq₂) k
cast-trans {m = suc _} {n = suc _} {o = suc _} eq₁ eq₂ zero = refl
cast-trans {m = suc _} {n = suc _} {o = suc _} eq₁ eq₂ (suc k) =
  cong suc (cast-trans (ℕ.suc-injective eq₁) (ℕ.suc-injective eq₂) k)

------------------------------------------------------------------------
-- Properties of _≤_
------------------------------------------------------------------------
-- Relational properties

≤-reflexive : _≡_  (_≤_ {n})
≤-reflexive refl = ℕ.≤-refl

≤-refl : Reflexive (_≤_ {n})
≤-refl = ≤-reflexive refl

≤-trans : Transitive (_≤_ {n})
≤-trans = ℕ.≤-trans

≤-antisym : Antisymmetric _≡_ (_≤_ {n})
≤-antisym x≤y y≤x = toℕ-injective (ℕ.≤-antisym x≤y y≤x)

≤-total : Total (_≤_ {n})
≤-total x y = ℕ.≤-total (toℕ x) (toℕ y)

≤-irrelevant : Irrelevant (_≤_ {m} {n})
≤-irrelevant = ℕ.≤-irrelevant

infix 4 _≤?_ _<?_

_≤?_ : B.Decidable (_≤_ {m} {n})
a ≤? b = toℕ a ℕ.≤? toℕ b

_<?_ : B.Decidable (_<_ {m} {n})
m <? n = suc (toℕ m) ℕ.≤? toℕ n

------------------------------------------------------------------------
-- Structures

≤-isPreorder : IsPreorder {A = Fin n} _≡_ _≤_
≤-isPreorder = record
  { isEquivalence = ≡.isEquivalence
  ; reflexive     = ≤-reflexive
  ; trans         = ≤-trans
  }

≤-isPartialOrder : IsPartialOrder {A = Fin n} _≡_ _≤_
≤-isPartialOrder = record
  { isPreorder = ≤-isPreorder
  ; antisym    = ≤-antisym
  }

≤-isTotalOrder : IsTotalOrder {A = Fin n} _≡_ _≤_
≤-isTotalOrder = record
  { isPartialOrder = ≤-isPartialOrder
  ; total          = ≤-total
  }

≤-isDecTotalOrder : IsDecTotalOrder {A = Fin n} _≡_ _≤_
≤-isDecTotalOrder = record
  { isTotalOrder = ≤-isTotalOrder
  ; _≟_          = _≟_
  ; _≤?_         = _≤?_
  }

------------------------------------------------------------------------
-- Bundles

≤-preorder :   Preorder _ _ _
≤-preorder n = record
  { isPreorder = ≤-isPreorder {n}
  }

≤-poset :   Poset _ _ _
≤-poset n = record
  { isPartialOrder = ≤-isPartialOrder {n}
  }

≤-totalOrder :   TotalOrder _ _ _
≤-totalOrder n = record
  { isTotalOrder = ≤-isTotalOrder {n}
  }

≤-decTotalOrder :   DecTotalOrder _ _ _
≤-decTotalOrder n = record
  { isDecTotalOrder = ≤-isDecTotalOrder {n}
  }

------------------------------------------------------------------------
-- Properties of _<_
------------------------------------------------------------------------
-- Relational properties

<-irrefl : Irreflexive _≡_ (_<_ {n})
<-irrefl refl = ℕ.<-irrefl refl

<-asym : Asymmetric (_<_ {n})
<-asym = ℕ.<-asym

<-trans : Transitive (_<_ {n})
<-trans = ℕ.<-trans

<-cmp : Trichotomous _≡_ (_<_ {n})
<-cmp zero    zero    = tri≈ (λ()) refl  (λ())
<-cmp zero    (suc j) = tri< z<s   (λ()) (λ())
<-cmp (suc i) zero    = tri> (λ()) (λ()) z<s
<-cmp (suc i) (suc j) with <-cmp i j
... | tri< i<j i≢j j≮i = tri< (s<s i<j)     (i≢j  suc-injective) (j≮i  s<s⁻¹)
... | tri> i≮j i≢j j<i = tri> (i≮j  s<s⁻¹) (i≢j  suc-injective) (s<s j<i)
... | tri≈ i≮j i≡j j≮i = tri≈ (i≮j  s<s⁻¹) (cong suc i≡j)        (j≮i  s<s⁻¹)

<-respˡ-≡ : (_<_ {m} {n}) Respectsˡ _≡_
<-respˡ-≡ refl x≤y = x≤y

<-respʳ-≡ : (_<_ {m} {n}) Respectsʳ _≡_
<-respʳ-≡ refl x≤y = x≤y

<-resp₂-≡ : (_<_ {n}) Respects₂ _≡_
<-resp₂-≡ = <-respʳ-≡ , <-respˡ-≡

<-irrelevant : Irrelevant (_<_ {m} {n})
<-irrelevant = ℕ.<-irrelevant

------------------------------------------------------------------------
-- Structures

<-isStrictPartialOrder : IsStrictPartialOrder {A = Fin n} _≡_ _<_
<-isStrictPartialOrder = record
  { isEquivalence = ≡.isEquivalence
  ; irrefl        = <-irrefl
  ; trans         = <-trans
  ; <-resp-≈      = <-resp₂-≡
  }

<-isStrictTotalOrder : IsStrictTotalOrder {A = Fin n} _≡_ _<_
<-isStrictTotalOrder = record
  { isStrictPartialOrder = <-isStrictPartialOrder
  ; compare              = <-cmp
  }

------------------------------------------------------------------------
-- Bundles

<-strictPartialOrder :   StrictPartialOrder _ _ _
<-strictPartialOrder n = record
  { isStrictPartialOrder = <-isStrictPartialOrder {n}
  }

<-strictTotalOrder :   StrictTotalOrder _ _ _
<-strictTotalOrder n = record
  { isStrictTotalOrder = <-isStrictTotalOrder {n}
  }

------------------------------------------------------------------------
-- Other properties

i<1+i :  (i : Fin n)  i < suc i
i<1+i = ℕ.n<1+n  toℕ

<⇒≢ : i < j  i  j
<⇒≢ i<i refl = ℕ.n≮n _ i<i

≤∧≢⇒< : i  j  i  j  i < j
≤∧≢⇒< {i = zero}  {zero}  _         0≢0   = contradiction refl 0≢0
≤∧≢⇒< {i = zero}  {suc j} _         _     = z<s
≤∧≢⇒< {i = suc i} {suc j} 1+i≤1+j 1+i≢1+j =
  s<s (≤∧≢⇒< (ℕ.s≤s⁻¹ 1+i≤1+j) (1+i≢1+j  (cong suc)))

------------------------------------------------------------------------
-- inject
------------------------------------------------------------------------

toℕ-inject :  {i : Fin n} (j : Fin′ i)  toℕ (inject j)  toℕ j
toℕ-inject {i = suc i} zero    = refl
toℕ-inject {i = suc i} (suc j) = cong suc (toℕ-inject j)

------------------------------------------------------------------------
-- inject₁
------------------------------------------------------------------------

fromℕ≢inject₁ : fromℕ n  inject₁ i
fromℕ≢inject₁ {i = suc i} eq = fromℕ≢inject₁ {i = i} (suc-injective eq)

inject₁-injective : inject₁ i  inject₁ j  i  j
inject₁-injective {i = zero}  {zero}  i≡j = refl
inject₁-injective {i = suc i} {suc j} i≡j =
  cong suc (inject₁-injective (suc-injective i≡j))

toℕ-inject₁ :  (i : Fin n)  toℕ (inject₁ i)  toℕ i
toℕ-inject₁ zero    = refl
toℕ-inject₁ (suc i) = cong suc (toℕ-inject₁ i)

toℕ-inject₁-≢ :  (i : Fin n)  n  toℕ (inject₁ i)
toℕ-inject₁-≢ (suc i) = toℕ-inject₁-≢ i  ℕ.suc-injective

inject₁ℕ< :  (i : Fin n)  toℕ (inject₁ i) ℕ.< n
inject₁ℕ< i rewrite toℕ-inject₁ i = toℕ<n i

inject₁ℕ≤ :  (i : Fin n)  toℕ (inject₁ i) ℕ.≤ n
inject₁ℕ≤ = ℕ.<⇒≤  inject₁ℕ<

≤̄⇒inject₁< : i  j  inject₁ i < suc j
≤̄⇒inject₁< {i = i} i≤j rewrite sym (toℕ-inject₁ i) = s<s i≤j

ℕ<⇒inject₁< :  {i : Fin (ℕ.suc n)} {j : Fin n}  j < i  inject₁ j < i
ℕ<⇒inject₁< {i = suc i} j≤i = ≤̄⇒inject₁< (ℕ.s≤s⁻¹ j≤i)

i≤inject₁[j]⇒i≤1+j : i  inject₁ j  i  suc j
i≤inject₁[j]⇒i≤1+j {i = zero}              _   = z≤n
i≤inject₁[j]⇒i≤1+j {i = suc i} {j = suc j} i≤j = s≤s (ℕ.m≤n⇒m≤1+n (subst (toℕ i ℕ.≤_) (toℕ-inject₁ j) (ℕ.s≤s⁻¹ i≤j)))

------------------------------------------------------------------------
-- lower₁
------------------------------------------------------------------------

toℕ-lower₁ :  i (p : n  toℕ i)  toℕ (lower₁ i p)  toℕ i
toℕ-lower₁ {ℕ.zero}  zero    p = contradiction refl p
toℕ-lower₁ {ℕ.suc m} zero    p = refl
toℕ-lower₁ {ℕ.suc m} (suc i) p = cong ℕ.suc (toℕ-lower₁ i (p  cong ℕ.suc))

lower₁-injective :  {n≢i : n  toℕ i} {n≢j : n  toℕ j} 
                   lower₁ i n≢i  lower₁ j n≢j  i  j
lower₁-injective {zero}  {zero}  {_}     {n≢i} {_}   _    = contradiction refl n≢i
lower₁-injective {zero}  {_}     {zero}  {_}   {n≢j} _    = contradiction refl n≢j
lower₁-injective {suc n} {zero}  {zero}  {_}   {_}   refl = refl
lower₁-injective {suc n} {suc i} {suc j} {n≢i} {n≢j} eq   =
  cong suc (lower₁-injective (suc-injective eq))

------------------------------------------------------------------------
-- inject₁ and lower₁

inject₁-lower₁ :  (i : Fin (suc n)) (n≢i : n  toℕ i) 
                 inject₁ (lower₁ i n≢i)  i
inject₁-lower₁ {zero}  zero     0≢0     = contradiction refl 0≢0
inject₁-lower₁ {suc n} zero     _       = refl
inject₁-lower₁ {suc n} (suc i)  n+1≢i+1 =
  cong suc (inject₁-lower₁ i  (n+1≢i+1  cong suc))

lower₁-inject₁′ :  (i : Fin n) (n≢i : n  toℕ (inject₁ i)) 
                  lower₁ (inject₁ i) n≢i  i
lower₁-inject₁′ zero    _       = refl
lower₁-inject₁′ (suc i) n+1≢i+1 =
  cong suc (lower₁-inject₁′ i (n+1≢i+1  cong suc))

lower₁-inject₁ :  (i : Fin n) 
                 lower₁ (inject₁ i) (toℕ-inject₁-≢ i)  i
lower₁-inject₁ i = lower₁-inject₁′ i (toℕ-inject₁-≢ i)

lower₁-irrelevant :  (i : Fin (suc n)) (n≢i₁ n≢i₂ : n  toℕ i) 
                    lower₁ i n≢i₁  lower₁ i n≢i₂
lower₁-irrelevant {zero}  zero     0≢0 _ = contradiction refl 0≢0
lower₁-irrelevant {suc n} zero     _   _ = refl
lower₁-irrelevant {suc n} (suc i)  _   _ =
  cong suc (lower₁-irrelevant i _ _)

inject₁≡⇒lower₁≡ :  {i : Fin n} {j : Fin (ℕ.suc n)} 
                  (n≢j : n  toℕ j)  inject₁ i  j  lower₁ j n≢j  i
inject₁≡⇒lower₁≡ n≢j i≡j = inject₁-injective (trans (inject₁-lower₁ _ n≢j) (sym i≡j))

------------------------------------------------------------------------
-- inject≤
------------------------------------------------------------------------

toℕ-inject≤ :  i .(m≤n : m ℕ.≤ n)  toℕ (inject≤ i m≤n)  toℕ i
toℕ-inject≤ {_} {suc n} zero    _ = refl
toℕ-inject≤ {_} {suc n} (suc i) _ = cong suc (toℕ-inject≤ i _)

inject≤-refl :  i .(n≤n : n ℕ.≤ n)  inject≤ i n≤n  i
inject≤-refl {suc n} zero    _   = refl
inject≤-refl {suc n} (suc i) _ = cong suc (inject≤-refl i _)

inject≤-idempotent :  (i : Fin m)
                     .(m≤n : m ℕ.≤ n) .(n≤o : n ℕ.≤ o) .(m≤o : m ℕ.≤ o) 
                     inject≤ (inject≤ i m≤n) n≤o  inject≤ i m≤o
inject≤-idempotent {_} {suc n} {suc o} zero    _ _ _ = refl
inject≤-idempotent {_} {suc n} {suc o} (suc i) _ _ _ =
  cong suc (inject≤-idempotent i _ _ _)

inject≤-trans :  (i : Fin m) .(m≤n : m ℕ.≤ n) .(n≤o : n ℕ.≤ o) 
                inject≤ (inject≤ i m≤n) n≤o  inject≤ i (ℕ.≤-trans m≤n n≤o)
inject≤-trans i _ _ = inject≤-idempotent i _ _ _

inject≤-injective :  .(m≤n m≤n′ : m ℕ.≤ n) i j 
                    inject≤ i m≤n  inject≤ j m≤n′  i  j
inject≤-injective {n = suc _} _ _ zero    zero    eq = refl
inject≤-injective {n = suc _} _ _ (suc i) (suc j) eq =
  cong suc (inject≤-injective _ _ i j (suc-injective eq))

inject≤-irrelevant :  .(m≤n m≤n′ : m ℕ.≤ n) i 
                    inject≤ i m≤n  inject≤ i m≤n′
inject≤-irrelevant _ _ i = refl

------------------------------------------------------------------------
-- pred
------------------------------------------------------------------------

pred< :  (i : Fin (suc n))  i  zero  pred i < i
pred< zero    i≢0 = contradiction refl i≢0
pred< (suc i) _   = ≤̄⇒inject₁< ℕ.≤-refl

------------------------------------------------------------------------
-- splitAt
------------------------------------------------------------------------

-- Fin (m + n) ↔ Fin m ⊎ Fin n

splitAt-↑ˡ :  m i n  splitAt m (i ↑ˡ n)  inj₁ i
splitAt-↑ˡ (suc m) zero    n = refl
splitAt-↑ˡ (suc m) (suc i) n rewrite splitAt-↑ˡ m i n = refl

splitAt⁻¹-↑ˡ :  {m} {n} {i} {j}  splitAt m {n} i  inj₁ j  j ↑ˡ n  i
splitAt⁻¹-↑ˡ {suc m} {n} {0F} {.0F} refl = refl
splitAt⁻¹-↑ˡ {suc m} {n} {suc i} {j} eq
  with inj₁ ksplitAt m i in splitAt[m][i]≡inj₁[j]
  with refleq
  = cong suc (splitAt⁻¹-↑ˡ {i = i} {j = k} splitAt[m][i]≡inj₁[j])

splitAt-↑ʳ :  m n i  splitAt m (m ↑ʳ i)  inj₂ {B = Fin n} i
splitAt-↑ʳ zero    n i = refl
splitAt-↑ʳ (suc m) n i rewrite splitAt-↑ʳ m n i = refl

splitAt⁻¹-↑ʳ :  {m} {n} {i} {j}  splitAt m {n} i  inj₂ j  m ↑ʳ j  i
splitAt⁻¹-↑ʳ {zero}  {n} {i} {j} refl = refl
splitAt⁻¹-↑ʳ {suc m} {n} {suc i} {j} eq
  with inj₂ ksplitAt m i in splitAt[m][i]≡inj₂[k]
  with refleq
  = cong suc (splitAt⁻¹-↑ʳ {i = i} {j = k} splitAt[m][i]≡inj₂[k])

splitAt-join :  m n i  splitAt m (join m n i)  i
splitAt-join m n (inj₁ x) = splitAt-↑ˡ m x n
splitAt-join m n (inj₂ y) = splitAt-↑ʳ m n y

join-splitAt :  m n i  join m n (splitAt m i)  i
join-splitAt zero    n i       = refl
join-splitAt (suc m) n zero    = refl
join-splitAt (suc m) n (suc i) = begin
  [ _↑ˡ n , (suc m) ↑ʳ_ ]′ (splitAt (suc m) (suc i)) ≡⟨ [,]-map (splitAt m i) 
  [ suc  (_↑ˡ n) , suc  (m ↑ʳ_) ]′ (splitAt m i)   ≡⟨ [,]-∘ suc (splitAt m i) 
  suc ([ _↑ˡ n , m ↑ʳ_ ]′ (splitAt m i))             ≡⟨ cong suc (join-splitAt m n i) 
  suc i                                                         
  where open ≡-Reasoning

-- splitAt "m" "i" ≡ inj₁ "i" if i < m

splitAt-< :  m {n} (i : Fin (m ℕ.+ n)) .(i<m : toℕ i ℕ.< m) 
            splitAt m i  inj₁ (fromℕ< i<m)
splitAt-< (suc m) zero    _   = refl
splitAt-< (suc m) (suc i) i<m = cong (Sum.map suc id) (splitAt-< m i (ℕ.s<s⁻¹ i<m))

-- splitAt "m" "i" ≡ inj₂ "i - m" if i ≥ m

splitAt-≥ :  m {n} (i : Fin (m ℕ.+ n)) .(i≥m : toℕ i ℕ.≥ m) 
            splitAt m i  inj₂ (reduce≥ i i≥m)
splitAt-≥ zero    i       _   = refl
splitAt-≥ (suc m) (suc i) i≥m = cong (Sum.map suc id) (splitAt-≥ m i (ℕ.s≤s⁻¹ i≥m))

------------------------------------------------------------------------
-- Bundles

+↔⊎ : Fin (m ℕ.+ n)  (Fin m  Fin n)
+↔⊎ {m} {n} = mk↔ₛ′ (splitAt m {n}) (join m n) (splitAt-join m n) (join-splitAt m n)

------------------------------------------------------------------------
-- remQuot
------------------------------------------------------------------------

-- Fin (m * n) ↔ Fin m × Fin n

remQuot-combine :  {n k} (i : Fin n) j  remQuot k (combine i j)  (i , j)
remQuot-combine {suc n} {k} zero    j rewrite splitAt-↑ˡ k j (n ℕ.* k) = refl
remQuot-combine {suc n} {k} (suc i) j rewrite splitAt-↑ʳ k   (n ℕ.* k) (combine i j) =
  cong (Product.map₁ suc) (remQuot-combine i j)

combine-remQuot :  {n} k (i : Fin (n ℕ.* k))  uncurry combine (remQuot {n} k i)  i
combine-remQuot {suc n} k i with splitAt k i in eq
... | inj₁ j = begin
  join k (n ℕ.* k) (inj₁ j)      ≡⟨ cong (join k (n ℕ.* k)) eq 
  join k (n ℕ.* k) (splitAt k i) ≡⟨ join-splitAt k (n ℕ.* k) i 
  i                              
  where open ≡-Reasoning
... | inj₂ j = begin
  k ↑ʳ (uncurry combine (remQuot {n} k j)) ≡⟨ cong (k ↑ʳ_) (combine-remQuot {n} k j) 
  join k (n ℕ.* k) (inj₂ j)                ≡⟨ cong (join k (n ℕ.* k)) eq 
  join k (n ℕ.* k) (splitAt k i)           ≡⟨ join-splitAt k (n ℕ.* k) i 
  i                                        
  where open ≡-Reasoning

toℕ-combine :  (i : Fin m) (j : Fin n)  toℕ (combine i j)  n ℕ.* toℕ i ℕ.+ toℕ j
toℕ-combine {suc m} {n} i@0F j = begin
  toℕ (combine i j)          ≡⟨⟩
  toℕ (j ↑ˡ (m ℕ.* n))       ≡⟨ toℕ-↑ˡ j (m ℕ.* n) 
  toℕ j                      ≡⟨⟩
  0 ℕ.+ toℕ j                ≡⟨ cong (ℕ._+ toℕ j) (ℕ.*-zeroʳ n) 
  n ℕ.* toℕ i ℕ.+ toℕ j      
  where open ≡-Reasoning
toℕ-combine {suc m} {n} (suc i) j = begin
  toℕ (combine (suc i) j)            ≡⟨⟩
  toℕ (n ↑ʳ combine i j)             ≡⟨ toℕ-↑ʳ n (combine i j) 
  n ℕ.+ toℕ (combine i j)            ≡⟨ cong (n ℕ.+_) (toℕ-combine i j) 
  n ℕ.+ (n ℕ.* toℕ i ℕ.+ toℕ j)     ≡⟨ ℕ.+-assoc n _ (toℕ j) 
  n ℕ.+ n ℕ.* toℕ i ℕ.+ toℕ j       ≡⟨ cong  z  z ℕ.+ n ℕ.* toℕ i ℕ.+ toℕ j) (ℕ.*-identityʳ n) 
  n ℕ.* 1 ℕ.+ n ℕ.* toℕ i ℕ.+ toℕ j ≡⟨ cong (ℕ._+ toℕ j) (ℕ.*-distribˡ-+ n 1 (toℕ i) ) 
  n ℕ.* toℕ (suc i) ℕ.+ toℕ j       
  where open ≡-Reasoning

combine-monoˡ-< :  {i j : Fin m} (k l : Fin n) 
                  i < j  combine i k < combine j l
combine-monoˡ-< {m} {n} {i} {j} k l i<j = begin-strict
  toℕ (combine i k)      ≡⟨ toℕ-combine i k 
  n ℕ.* toℕ i ℕ.+ toℕ k  <⟨ ℕ.+-monoʳ-< (n ℕ.* toℕ i) (toℕ<n k) 
  n ℕ.* toℕ i ℕ.+ n      ≡⟨ ℕ.+-comm _ n 
  n ℕ.+ n ℕ.* toℕ i      ≡⟨ cong (n ℕ.+_) (ℕ.*-comm n _) 
  n ℕ.+ toℕ i ℕ.* n      ≡⟨ ℕ.*-comm (suc (toℕ i)) n 
  n ℕ.* suc (toℕ i)      ≤⟨ ℕ.*-monoʳ-≤ n (toℕ-mono-< i<j) 
  n ℕ.* toℕ j            ≤⟨ ℕ.m≤m+n (n ℕ.* toℕ j) (toℕ l) 
  n ℕ.* toℕ j ℕ.+ toℕ l  ≡⟨ toℕ-combine j l 
  toℕ (combine j l)      
  where open ℕ.≤-Reasoning

combine-injectiveˡ :  (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) 
                     combine i j  combine k l  i  k
combine-injectiveˡ i j k l cᵢⱼ≡cₖₗ with <-cmp i k
... | tri< i<k _ _ = contradiction cᵢⱼ≡cₖₗ (<⇒≢ (combine-monoˡ-< j l i<k))
... | tri≈ _ i≡k _ = i≡k
... | tri> _ _ i>k = contradiction (sym cᵢⱼ≡cₖₗ) (<⇒≢ (combine-monoˡ-< l j i>k))

combine-injectiveʳ :  (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) 
                     combine i j  combine k l  j  l
combine-injectiveʳ {m} {n} i j k l cᵢⱼ≡cₖₗ
  with reflcombine-injectiveˡ i j k l cᵢⱼ≡cₖₗ
  = toℕ-injective (ℕ.+-cancelˡ-≡ (n ℕ.* toℕ i) _ _ (begin
  n ℕ.* toℕ i ℕ.+ toℕ j ≡⟨ toℕ-combine i j 
  toℕ (combine i j)     ≡⟨ cong toℕ cᵢⱼ≡cₖₗ 
  toℕ (combine i l)     ≡⟨ toℕ-combine i l 
  n ℕ.* toℕ i ℕ.+ toℕ l ))
  where open ≡-Reasoning

combine-injective :  (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) 
                    combine i j  combine k l  i  k × j  l
combine-injective i j k l cᵢⱼ≡cₖₗ =
  combine-injectiveˡ i j k l cᵢⱼ≡cₖₗ ,
  combine-injectiveʳ i j k l cᵢⱼ≡cₖₗ

combine-surjective :  (i : Fin (m ℕ.* n))  ∃₂ λ j k  combine j k  i
combine-surjective {m} {n} i with j , kremQuot {m} n i in eq
  = j , k , (begin
  combine j k                       ≡⟨ uncurry (cong₂ combine) (,-injective eq) 
  uncurry combine (remQuot {m} n i) ≡⟨ combine-remQuot {m} n i 
  i                                 )
  where open ≡-Reasoning

------------------------------------------------------------------------
-- Bundles

*↔× : Fin (m ℕ.* n)  (Fin m × Fin n)
*↔× {m} {n} = mk↔ₛ′ (remQuot {m} n) (uncurry combine)
  (uncurry remQuot-combine)
  (combine-remQuot {m} n)

------------------------------------------------------------------------
-- fin→fun
------------------------------------------------------------------------

funToFin-finToFin : funToFin {m} {n}  finToFun  id
funToFin-finToFin {zero}  {n} zero = refl
funToFin-finToFin {suc m} {n} k    =
  begin
    combine (finToFun {n} {suc m} k zero) (funToFin (finToFun {n} {suc m} k  suc))
  ≡⟨⟩
    combine (quotient {n} (n ^ m) k)
      (funToFin (finToFun {n} {m} (remainder {n} (n ^ m) k)))
  ≡⟨ cong (combine (quotient {n} (n ^ m) k))
       (funToFin-finToFin {m} (remainder {n} (n ^ m) k)) 
    combine (quotient {n} (n ^ m) k) (remainder {n} (n ^ m) k)
  ≡⟨⟩
    uncurry combine (remQuot {n} (n ^ m) k)
  ≡⟨ combine-remQuot {n = n} (n ^ m) k 
    k
   where open ≡-Reasoning

finToFun-funToFin : (f : Fin m  Fin n)  finToFun (funToFin f)  f
finToFun-funToFin {suc m} {n} f  zero   =
  begin
    quotient (n ^ m) (combine (f zero) (funToFin (f  suc)))
  ≡⟨ cong proj₁ (remQuot-combine _ _) 
    proj₁ (f zero , funToFin (f  suc))
  ≡⟨⟩
    f zero
   where open ≡-Reasoning
finToFun-funToFin {suc m} {n} f (suc i) =
  begin
    finToFun (remainder {n} (n ^ m) (combine (f zero) (funToFin (f  suc)))) i
  ≡⟨ cong  rq  finToFun (proj₂ rq) i) (remQuot-combine {n} _ _) 
    finToFun (proj₂ (f zero , funToFin (f  suc))) i
  ≡⟨⟩
    finToFun (funToFin (f  suc)) i
  ≡⟨ finToFun-funToFin (f  suc) i 
    (f  suc) i
  ≡⟨⟩
    f (suc i)
   where open ≡-Reasoning

------------------------------------------------------------------------
-- Bundles

^↔→ : Extensionality _ _  Fin (m ^ n)  (Fin n  Fin m)
^↔→ {m} {n} ext = mk↔ₛ′ finToFun funToFin
  (ext  finToFun-funToFin)
  (funToFin-finToFin {n} {m})

------------------------------------------------------------------------
-- lift
------------------------------------------------------------------------

lift-injective :  (f : Fin m  Fin n)  Injective _≡_ _≡_ f 
                  k  Injective _≡_ _≡_ (lift k f)
lift-injective f inj zero    {_}     {_}     eq = inj eq
lift-injective f inj (suc k) {zero}  {zero}  eq = refl
lift-injective f inj (suc k) {suc _} {suc _} eq =
  cong suc (lift-injective f inj k (suc-injective eq))

------------------------------------------------------------------------
-- pred
------------------------------------------------------------------------

<⇒≤pred : i < j  i  pred j
<⇒≤pred {i = zero}  {j = suc j} z<s       = z≤n
<⇒≤pred {i = suc i} {j = suc j} (s<s i<j) rewrite toℕ-inject₁ j = i<j

------------------------------------------------------------------------
-- _ℕ-_
------------------------------------------------------------------------

toℕ‿ℕ- :  n i  toℕ (n ℕ- i)  n  toℕ i
toℕ‿ℕ- n       zero     = toℕ-fromℕ n
toℕ‿ℕ- (suc n) (suc i)  = toℕ‿ℕ- n i

------------------------------------------------------------------------
-- _ℕ-ℕ_
------------------------------------------------------------------------

ℕ-ℕ≡toℕ‿ℕ- :  n i  n ℕ-ℕ i  toℕ (n ℕ- i)
ℕ-ℕ≡toℕ‿ℕ- n       zero    = sym (toℕ-fromℕ n)
ℕ-ℕ≡toℕ‿ℕ- (suc n) (suc i) = ℕ-ℕ≡toℕ‿ℕ- n i

nℕ-ℕi≤n :  n i  n ℕ-ℕ i ℕ.≤ n
nℕ-ℕi≤n n       zero     = ℕ.≤-refl
nℕ-ℕi≤n (suc n) (suc i)  = begin
  n ℕ-ℕ i  ≤⟨ nℕ-ℕi≤n n i 
  n        ≤⟨ ℕ.n≤1+n n 
  suc n    
  where open ℕ.≤-Reasoning

------------------------------------------------------------------------
-- punchIn
------------------------------------------------------------------------

punchIn-injective :  i (j k : Fin n) 
                    punchIn i j  punchIn i k  j  k
punchIn-injective zero    _       _       refl      = refl
punchIn-injective (suc i) zero    zero    _         = refl
punchIn-injective (suc i) (suc j) (suc k) ↑j+1≡↑k+1 =
  cong suc (punchIn-injective i j k (suc-injective ↑j+1≡↑k+1))

punchInᵢ≢i :  i (j : Fin n)  punchIn i j  i
punchInᵢ≢i (suc i) (suc j) = punchInᵢ≢i i j  suc-injective

------------------------------------------------------------------------
-- punchOut
------------------------------------------------------------------------

-- A version of 'cong' for 'punchOut' in which the inequality argument
-- can be changed out arbitrarily (reflecting the proof-irrelevance of
-- that argument).

punchOut-cong :  (i : Fin (suc n)) {j k} {i≢j : i  j} {i≢k : i  k} 
                j  k  punchOut i≢j  punchOut i≢k
punchOut-cong {_}     zero    {zero}         {i≢j = 0≢0} = contradiction refl 0≢0
punchOut-cong {_}     zero    {suc j} {zero} {i≢k = 0≢0} = contradiction refl 0≢0
punchOut-cong {_}     zero    {suc j} {suc k}            = suc-injective
punchOut-cong {suc n} (suc i) {zero}  {zero}   _ = refl
punchOut-cong {suc n} (suc i) {suc j} {suc k}    = cong suc  punchOut-cong i  suc-injective

-- An alternative to 'punchOut-cong' in the which the new inequality
-- argument is specific. Useful for enabling the omission of that
-- argument during equational reasoning.

punchOut-cong′ :  (i : Fin (suc n)) {j k} {p : i  j} (q : j  k) 
                 punchOut p  punchOut (p  sym  trans q  sym)
punchOut-cong′ i q = punchOut-cong i q

punchOut-injective :  {i j k : Fin (suc n)}
                     (i≢j : i  j) (i≢k : i  k) 
                     punchOut i≢j  punchOut i≢k  j  k
punchOut-injective {_}     {zero}   {zero}  {_}     0≢0 _   _     = contradiction refl 0≢0
punchOut-injective {_}     {zero}   {_}     {zero}  _   0≢0 _     = contradiction refl 0≢0
punchOut-injective {_}     {zero}   {suc j} {suc k} _   _   pⱼ≡pₖ = cong suc pⱼ≡pₖ
punchOut-injective {suc n} {suc i}  {zero}  {zero}  _   _    _    = refl
punchOut-injective {suc n} {suc i}  {suc j} {suc k} i≢j i≢k pⱼ≡pₖ =
  cong suc (punchOut-injective (i≢j  cong suc) (i≢k  cong suc) (suc-injective pⱼ≡pₖ))

punchIn-punchOut :  {i j : Fin (suc n)} (i≢j : i  j) 
                   punchIn i (punchOut i≢j)  j
punchIn-punchOut {_}     {zero}   {zero}  0≢0 = contradiction refl 0≢0
punchIn-punchOut {_}     {zero}   {suc j} _   = refl
punchIn-punchOut {suc m} {suc i}  {zero}  i≢j = refl
punchIn-punchOut {suc m} {suc i}  {suc j} i≢j =
  cong suc (punchIn-punchOut (i≢j  cong suc))

punchOut-punchIn :  i {j : Fin n}  punchOut {i = i} {j = punchIn i j} (punchInᵢ≢i i j  sym)  j
punchOut-punchIn zero    {j}     = refl
punchOut-punchIn (suc i) {zero}  = refl
punchOut-punchIn (suc i) {suc j} = cong suc (begin
  punchOut (punchInᵢ≢i i j  suc-injective  sym  cong suc)  ≡⟨ punchOut-cong i refl 
  punchOut (punchInᵢ≢i i j  sym)                             ≡⟨ punchOut-punchIn i 
  j                                                           )
  where open ≡-Reasoning


------------------------------------------------------------------------
-- pinch
------------------------------------------------------------------------

pinch-surjective :  (i : Fin n)  Surjective _≡_ _≡_ (pinch i)
pinch-surjective _       zero    = zero , λ { refl  refl }
pinch-surjective zero    (suc j) = suc (suc j) , λ { refl  refl }
pinch-surjective (suc i) (suc j) = map suc  {f refl  cong suc (f refl)}) (pinch-surjective i j)

pinch-mono-≤ :  (i : Fin n)  (pinch i) Preserves _≤_  _≤_
pinch-mono-≤ 0F      {0F}    {k}     0≤n = z≤n
pinch-mono-≤ 0F      {suc j} {suc k} j≤k = ℕ.s≤s⁻¹ j≤k
pinch-mono-≤ (suc i) {0F}    {k}     0≤n = z≤n
pinch-mono-≤ (suc i) {suc j} {suc k} j≤k = s≤s (pinch-mono-≤ i (ℕ.s≤s⁻¹ j≤k))

pinch-injective :  {i : Fin n} {j k : Fin (ℕ.suc n)} 
                  suc i  j  suc i  k  pinch i j  pinch i k  j  k
pinch-injective {i = i}     {zero}  {zero}  _     _     _  = refl
pinch-injective {i = zero}  {zero}  {suc k} _     1+i≢k eq =
  contradiction (cong suc eq) 1+i≢k
pinch-injective {i = zero}  {suc j} {zero}  1+i≢j _     eq =
  contradiction (cong suc (sym eq)) 1+i≢j
pinch-injective {i = zero}  {suc j} {suc k} _     _     eq =
  cong suc eq
pinch-injective {i = suc i} {suc j} {suc k} 1+i≢j 1+i≢k eq =
  cong suc
    (pinch-injective (1+i≢j  cong suc) (1+i≢k  cong suc)
      (suc-injective eq))

------------------------------------------------------------------------
-- Quantification
------------------------------------------------------------------------

module _ {p} {P : Pred (Fin (suc n)) p} where

  ∀-cons : P zero  Π[ P  suc ]  Π[ P ]
  ∀-cons z s zero    = z
  ∀-cons z s (suc i) = s i

  ∀-cons-⇔ : (P zero × Π[ P  suc ])  Π[ P ]
  ∀-cons-⇔ = mk⇔ (uncurry ∀-cons) < _$ zero , _∘ suc >

  ∃-here : P zero  ∃⟨ P 
  ∃-here = zero ,_

  ∃-there : ∃⟨ P  suc   ∃⟨ P 
  ∃-there = map suc id

  ∃-toSum : ∃⟨ P   P zero  ∃⟨ P  suc 
  ∃-toSum ( zero , P₀ ) = inj₁ P₀
  ∃-toSum (suc f , P₁₊) = inj₂ (f , P₁₊)

  ⊎⇔∃ : (P zero  ∃⟨ P  suc )  ∃⟨ P 
  ⊎⇔∃ = mk⇔ [ ∃-here , ∃-there ] ∃-toSum

decFinSubset :  {p q} {P : Pred (Fin n) p} {Q : Pred (Fin n) q} 
               Decidable Q  (∀ {i}  Q i  Dec (P i))  Dec (Q  P)
decFinSubset {zero}  {_}     {_} Q? P? = yes λ {}
decFinSubset {suc n} {P = P} {Q} Q? P?
  with Q? zero | ∀-cons {P = λ x  Q x  P x}
... | false because [¬Q0] | cons =
  map′  f {x}  cons (⊥-elim  invert [¬Q0])  x  f {x}) x)
        f {x}  f {suc x})
       (decFinSubset (Q?  suc) P?)
... | true  because  [Q0] | cons =
  map′ (uncurry λ P0 rec {x}  cons  _  P0)  x  rec {x}) x)
       < _$ invert [Q0] ,  f {x}  f {suc x}) >
       (P? (invert [Q0]) ×-dec decFinSubset (Q?  suc) P?)

any? :  {p} {P : Pred (Fin n) p}  Decidable P  Dec ( P)
any? {zero}  {P = _} P? = no λ { (() , _) }
any? {suc n} {P = P} P? = Dec.map ⊎⇔∃ (P? zero ⊎-dec any? (P?  suc))

all? :  {p} {P : Pred (Fin n) p}  Decidable P  Dec (∀ f  P f)
all? P? = map′  ∀p f  ∀p tt)  ∀p {x} _  ∀p x)
               (decFinSubset U?  {f} _  P? f))

private
  -- A nice computational property of `all?`:
  -- The boolean component of the result is exactly the
  -- obvious fold of boolean tests (`foldr _∧_ true`).
  note :  {p} {P : Pred (Fin 3) p} (P? : Decidable P) 
          λ z  Dec.does (all? P?)  z
  note P? = Dec.does (P? 0F)  Dec.does (P? 1F)  Dec.does (P? 2F)  true
          , refl

-- If a decidable predicate P over a finite set is sometimes false,
-- then we can find the smallest value for which this is the case.

¬∀⟶∃¬-smallest :  n {p} (P : Pred (Fin n) p)  Decidable P 
                 ¬ (∀ i  P i)   λ i  ¬ P i × ((j : Fin′ i)  P (inject j))
¬∀⟶∃¬-smallest zero    P P? ¬∀P = contradiction (λ()) ¬∀P
¬∀⟶∃¬-smallest (suc n) P P? ¬∀P with P? zero
... | false because [¬P₀] = (zero , invert [¬P₀] , λ ())
... | true  because  [P₀] = map suc (map id (∀-cons (invert [P₀])))
  (¬∀⟶∃¬-smallest n (P  suc) (P?  suc) (¬∀P  (∀-cons (invert [P₀]))))

-- When P is a decidable predicate over a finite set the following
-- lemma can be proved.

¬∀⟶∃¬ :  n {p} (P : Pred (Fin n) p)  Decidable P 
          ¬ (∀ i  P i)  ( λ i  ¬ P i)
¬∀⟶∃¬ n P P? ¬P = map id proj₁ (¬∀⟶∃¬-smallest n P P? ¬P)

------------------------------------------------------------------------
-- Properties of functions to and from Fin
------------------------------------------------------------------------

-- The pigeonhole principle.

pigeonhole : m ℕ.< n  (f : Fin n  Fin m)  ∃₂ λ i j  i < j × f i  f j
pigeonhole z<s               f = contradiction (f zero) λ()
pigeonhole (s<s m<n@(s≤s _)) f with any?  k  f zero  f (suc k))
... | yes (j , f₀≡fⱼ) = zero , suc j , z<s , f₀≡fⱼ
... | no  f₀≢fₖ
  with i , j , i<j , fᵢ≡fⱼpigeonhole m<n  j  punchOut (f₀≢fₖ  (j ,_ )))
  = suc i , suc j , s<s i<j , punchOut-injective (f₀≢fₖ  (i ,_)) _ fᵢ≡fⱼ

injective⇒≤ :  {f : Fin m  Fin n}  Injective _≡_ _≡_ f  m ℕ.≤ n
injective⇒≤ {zero}  {_}     {f} _   = z≤n
injective⇒≤ {suc _} {zero}  {f} _   = contradiction (f zero) ¬Fin0
injective⇒≤ {suc _} {suc _} {f} inj = s≤s (injective⇒≤  eq 
  suc-injective (inj (punchOut-injective
    (contraInjective inj 0≢1+n)
    (contraInjective inj 0≢1+n) eq))))

<⇒notInjective :  {f : Fin m  Fin n}  n ℕ.< m  ¬ (Injective _≡_ _≡_ f)
<⇒notInjective n<m inj = ℕ.≤⇒≯ (injective⇒≤ inj) n<m

ℕ→Fin-notInjective :  (f :   Fin n)  ¬ (Injective _≡_ _≡_ f)
ℕ→Fin-notInjective f inj = ℕ.<-irrefl refl
  (injective⇒≤ (Comp.injective _≡_ _≡_ _≡_ toℕ-injective inj))

-- Cantor-Schröder-Bernstein for finite sets

cantor-schröder-bernstein :  {f : Fin m  Fin n} {g : Fin n  Fin m} 
                            Injective _≡_ _≡_ f  Injective _≡_ _≡_ g 
                            m  n
cantor-schröder-bernstein f-inj g-inj = ℕ.≤-antisym
  (injective⇒≤ f-inj) (injective⇒≤ g-inj)

------------------------------------------------------------------------
-- Effectful
------------------------------------------------------------------------

module _ {f} {F : Set f  Set f} (RA : RawApplicative F) where

  open RawApplicative RA

  sequence :  {n} {P : Pred (Fin n) f} 
             (∀ i  F (P i))  F (∀ i  P i)
  sequence {zero}  ∀iPi = pure λ()
  sequence {suc n} ∀iPi = ∀-cons <$> ∀iPi zero <*> sequence (∀iPi  suc)

module _ {f} {F : Set f  Set f} (RF : RawFunctor F) where

  open RawFunctor RF

  sequence⁻¹ :  {A : Set f} {P : Pred A f} 
               F (∀ i  P i)  (∀ i  F (P i))
  sequence⁻¹ F∀iPi i =  f  f i) <$> F∀iPi

------------------------------------------------------------------------
-- If there is an injection from a type A to a finite set, then the type
-- has decidable equality.

module _ {} {S : Setoid a } (inj : Injection S (≡-setoid n)) where
  open Setoid S

  inj⇒≟ : B.Decidable _≈_
  inj⇒≟ = Dec.via-injection inj _≟_

  inj⇒decSetoid : DecSetoid a 
  inj⇒decSetoid = record
    { isDecEquivalence = record
      { isEquivalence = isEquivalence
      ; _≟_           = inj⇒≟
      }
    }

------------------------------------------------------------------------
-- Opposite
------------------------------------------------------------------------

opposite-prop :  (i : Fin n)  toℕ (opposite i)  n  suc (toℕ i)
opposite-prop {suc n} zero    = toℕ-fromℕ n
opposite-prop {suc n} (suc i) = begin
  toℕ (inject₁ (opposite i)) ≡⟨ toℕ-inject₁ (opposite i) 
  toℕ (opposite i)           ≡⟨ opposite-prop i 
  n  suc (toℕ i)            
  where open ≡-Reasoning

opposite-involutive : Involutive {A = Fin n} _≡_ opposite
opposite-involutive {suc n} i = toℕ-injective (begin
  toℕ (opposite (opposite i)) ≡⟨ opposite-prop (opposite i) 
  n  (toℕ (opposite i))      ≡⟨ cong (n ∸_) (opposite-prop i) 
  n  (n  (toℕ i))           ≡⟨ ℕ.m∸[m∸n]≡n (toℕ≤pred[n] i) 
  toℕ i                       )
  where open ≡-Reasoning

opposite-suc :  (i : Fin n)  toℕ (opposite (suc i))  toℕ (opposite i)
opposite-suc {n} i = begin
  toℕ (opposite (suc i))     ≡⟨ opposite-prop (suc i) 
  suc n  suc (toℕ (suc i))  ≡⟨⟩
  n  toℕ (suc i)            ≡⟨⟩
  n  suc (toℕ i)            ≡⟨ opposite-prop i 
  toℕ (opposite i)           
  where open ≡-Reasoning


------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 1.5

inject+-raise-splitAt = join-splitAt
{-# WARNING_ON_USAGE inject+-raise-splitAt
"Warning: inject+-raise-splitAt was deprecated in v1.5.
Please use join-splitAt instead."
#-}

-- Version 2.0

toℕ-raise = toℕ-↑ʳ
{-# WARNING_ON_USAGE toℕ-raise
"Warning: toℕ-raise was deprecated in v2.0.
Please use toℕ-↑ʳ instead."
#-}
toℕ-inject+ :  {m} n (i : Fin m)  toℕ i  toℕ (i ↑ˡ n)
toℕ-inject+ n i = sym (toℕ-↑ˡ i n)
{-# WARNING_ON_USAGE toℕ-inject+
"Warning: toℕ-inject+ was deprecated in v2.0.
Please use toℕ-↑ˡ instead.
NB argument order has been flipped:
the left-hand argument is the Fin m
the right-hand is the Nat index increment."
#-}
splitAt-inject+ :  m n i  splitAt m (i ↑ˡ n)  inj₁ i
splitAt-inject+ m n i = splitAt-↑ˡ m i n
{-# WARNING_ON_USAGE splitAt-inject+
"Warning: splitAt-inject+ was deprecated in v2.0.
Please use splitAt-↑ˡ instead.
NB argument order has been flipped."
#-}
splitAt-raise :  m n i  splitAt m (m ↑ʳ i)  inj₂ {B = Fin n} i
splitAt-raise = splitAt-↑ʳ
{-# WARNING_ON_USAGE splitAt-raise
"Warning: splitAt-raise was deprecated in v2.0.
Please use splitAt-↑ʳ instead."
#-}
Fin0↔⊥ : Fin 0  
Fin0↔⊥ = 0↔⊥
{-# WARNING_ON_USAGE Fin0↔⊥
"Warning: Fin0↔⊥ was deprecated in v2.0.
Please use 0↔⊥ instead."
#-}
eq? : A  Fin n  DecidableEquality A
eq? = inj⇒≟
{-# WARNING_ON_USAGE eq?
"Warning: eq? was deprecated in v2.0.
Please use inj⇒≟ instead."
#-}

private

  z≺s :  {n}  zero  suc n
  z≺s = _ ≻toℕ zero

  s≺s :  {m n}  m  n  suc m  suc n
  s≺s (n ≻toℕ i) = (suc n) ≻toℕ (suc i)

  <⇒≺ : ℕ._<_  _≺_
  <⇒≺ {zero}  z<s      = z≺s
  <⇒≺ {suc m} (s<s lt) = s≺s (<⇒≺ lt)

  ≺⇒< : _≺_  ℕ._<_
  ≺⇒< (n ≻toℕ i) = toℕ<n i

≺⇒<′ : _≺_  ℕ._<′_
≺⇒<′ lt = ℕ.<⇒<′ (≺⇒< lt)
{-# WARNING_ON_USAGE ≺⇒<′
"Warning: ≺⇒<′ was deprecated in v2.0.
Please use <⇒<′ instead."
#-}

<′⇒≺ : ℕ._<′_  _≺_
<′⇒≺ lt = <⇒≺ (ℕ.<′⇒< lt)
{-# WARNING_ON_USAGE <′⇒≺
"Warning: <′⇒≺ was deprecated in v2.0.
Please use <′⇒< instead."
#-}