{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category)
open import Categories.Category.Monoidal using (Monoidal)
open import Categories.Category.Monoidal.Symmetric using (Symmetric)
module Categories.Category.Monoidal.Symmetric.Properties
{o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (SM : Symmetric M) where
open import Data.Product using (_,_)
import Categories.Category.Monoidal.Braided.Properties as BraidedProperties
open import Categories.Morphism.Reasoning C
open Category C
open HomReasoning
open Symmetric SM
open BraidedProperties braided public using (module Shorthands)
braiding-selfInverse : ∀ {X Y} → braiding.⇐.η (X , Y) ≈ braiding.⇒.η (Y , X)
braiding-selfInverse = introʳ commutative ○ cancelˡ (braiding.iso.isoˡ _)
inv-commutative : ∀ {X Y} → braiding.⇐.η (X , Y) ∘ braiding.⇐.η (Y , X) ≈ id
inv-commutative = ∘-resp-≈ braiding-selfInverse braiding-selfInverse ○ commutative