{-# OPTIONS --without-K --safe #-}

open import Categories.Category using (Category; module Commutation)
open import Categories.Category.Monoidal
open import Categories.Category.Monoidal.Braided using (Braided)

module Categories.Category.Monoidal.Braided.Properties
  {o  e} {C : Category o  e} {M : Monoidal C} (BM : Braided M) where

open import Data.Product using (_,_)

import Categories.Category.Construction.Core C as Core
open import Categories.Category.Monoidal.Properties M
open import Categories.Category.Monoidal.Reasoning M
import Categories.Category.Monoidal.Utilities M as MonoidalUtilities
open import Categories.Functor using (Functor)
open import Categories.Morphism.Reasoning C hiding (push-eq)
open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism.Properties
  using (push-eq)

open Category C
open Commutation C
open Braided BM
open MonoidalUtilities using (_⊗ᵢ_; unitorʳ-naturalIsomorphism)
open MonoidalUtilities.Shorthands
open Core.Shorthands
open Commutationᵢ

private
  variable
    X Y Z : Obj

-- Shorthands for the braiding

module Shorthands where

  σ⇒ :  {X Y}  X ⊗₀ Y  Y ⊗₀ X
  σ⇒ {X} {Y} = braiding.⇒.η (X , Y)

  σ⇐ :  {X Y}  Y ⊗₀ X  X ⊗₀ Y
  σ⇐ {X} {Y} = braiding.⇐.η (X , Y)

  σ = braiding.FX≅GX

open Shorthands

private

  -- It's easier to prove the following lemma, which is the desired
  -- coherence theorem moduolo application of the |-⊗ unit| functor.
  -- Because |-⊗ unit| is equivalent to the identity functor, the
  -- lemma and the theorem are equivalent.

  -- The following diagram illustrates the hexagon that we are
  -- operating on. The main outer hexagon is hexagon₁, the braiding
  -- coherence, instantiated with X, 1 and 1 (Here we denote the unit
  -- by 1 for brevity).
  -- In the middle are X1 and 1X along with morphisms towards them.
  -- The lower hexagon (given by the double lines) commutes and is
  -- an intermediary in the final proof. It is there to effectively
  -- get rid of the top half of the main hexagon.
  -- The rest of the proof is isolating the bottom left triangle
  -- which represents our desired identity. It is doing that by
  -- proving that the pentagon to the right of it commutes.
  -- The pentagon commuting is, in turn, proved by gluing the
  -- rightmost "square" onto the middle triangle.
  --
  --
  --       ┌─────>  X(11)  ─────────>  (11)X ──────┐
  --      ┌┘ α        │        σ         │       α └┐
  --     ┌┘           │id⊗λ              │λ⊗id     └┐
  --    ┌┘            V                  V           V
  --  (X1)1 ═══════> X1  ════════════>  1X <══════ 1(1X)
  --    ╚╗   ρ⊗id     Λ <───┐  σ              λ      Λ
  --     ╚╗           │λ⊗id └────────┐              ╔╝
  --      ╚╗          │           λ   └┐           ╔╝
  --       ╚═════>  (1X)1  ═════════>  1(X1)  ═════╝
  --       σ⊗id                α                id⊗σ

  braiding-coherence⊗unit : [ (X ⊗₀ unit) ⊗₀ unit  X ⊗₀ unit ]⟨
                              σ⇒ ⊗₁ id            ⇒⟨ (unit ⊗₀ X) ⊗₀ unit 
                              λ⇒ ⊗₁ id
                             ρ⇒ ⊗₁ id
                            
  braiding-coherence⊗unit = cancel-fromˡ braiding.FX≅GX (begin
    σ⇒  λ⇒ ⊗₁ id  σ⇒ ⊗₁ id            ≈⟨ pullˡ ( (glue◽◃ unitorˡ-commute-from coherence₁)) 
    (λ⇒  id ⊗₁ σ⇒  α⇒)  σ⇒ ⊗₁ id     ≈⟨ assoc²βε 
    λ⇒  id ⊗₁ σ⇒  α⇒  σ⇒ ⊗₁ id       ≈⟨ refl⟩∘⟨ hexagon₁ 
    λ⇒  α⇒  σ⇒  α⇒                   ≈⟨ pullˡ coherence₁ 
    λ⇒ ⊗₁ id  σ⇒  α⇒                  ≈˘⟨ pushˡ (braiding.⇒.commute _) 
    (σ⇒  id ⊗₁ λ⇒)  α⇒                ≈⟨ pullʳ triangle 
    σ⇒  ρ⇒ ⊗₁ id                       )

-- The desired theorem follows from |braiding-coherence⊗unit| by
-- translating it along the right unitor (which is a natural iso).

braiding-coherence : [ X ⊗₀ unit  X ]⟨
                       σ⇒              ⇒⟨ unit ⊗₀ X 
                       λ⇒
                      ρ⇒
                     
braiding-coherence = push-eq unitorʳ-naturalIsomorphism (begin
  (λ⇒  σ⇒) ⊗₁ id           ≈⟨ homomorphism 
  (λ⇒ ⊗₁ id)  (σ⇒ ⊗₁ id)   ≈⟨ braiding-coherence⊗unit 
  ρ⇒  ⊗₁ id                 )
  where open Functor (-⊗ unit)

-- Variants of the hexagon identities defined on isos.

hexagon₁-iso : idᵢ ⊗ᵢ σ ∘ᵢ associator ∘ᵢ σ {X , Y} ⊗ᵢ idᵢ {Z} ≈ᵢ
               associator ∘ᵢ σ {X , Y ⊗₀ Z} ∘ᵢ associator
hexagon₁-iso =  hexagon₁ 

hexagon₁-inv : (σ⇐ {X} {Y} ⊗₁ id {Z}  α⇐)  id ⊗₁ σ⇐ 
               (α⇐  σ⇐ {X} {Y ⊗₀ Z})  α⇐
hexagon₁-inv = to-≈ hexagon₁-iso

hexagon₂-iso : (σ ⊗ᵢ idᵢ ∘ᵢ associator ⁻¹) ∘ᵢ idᵢ {X} ⊗ᵢ σ {Y , Z} ≈ᵢ
               (associator ⁻¹ ∘ᵢ σ {X ⊗₀ Y , Z}) ∘ᵢ associator ⁻¹
hexagon₂-iso =  hexagon₂ 

hexagon₂-inv : id {X} ⊗₁ σ⇐ {Y} {Z}  α⇒  σ⇐ ⊗₁ id 
               α⇒  σ⇐ {X ⊗₀ Y} {Z}  α⇒
hexagon₂-inv = to-≈ hexagon₂-iso

-- Variants of the above coherence law.

braiding-coherence-iso : unitorˡ ∘ᵢ σ ≈ᵢ unitorʳ {X}
braiding-coherence-iso =  braiding-coherence 

braiding-coherence-inv : σ⇐  λ⇐  ρ⇐ {X}
braiding-coherence-inv = to-≈ braiding-coherence-iso

-- The inverse of the braiding is also a braiding on M.

inv-Braided : Braided M
inv-Braided = record
  { braiding = niHelper (record
    { η       = λ _  σ⇐
    ; η⁻¹     = λ _  σ⇒
    ; commute = λ{ (f , g)  braiding.⇐.commute (g , f) }
    ; iso     = λ{ (X , Y)  record
      { isoˡ = braiding.iso.isoʳ (Y , X)
      ; isoʳ = braiding.iso.isoˡ (Y , X) } }
    })
  ; hexagon₁ = hexagon₂-inv
  ; hexagon₂ = hexagon₁-inv
  }

-- A variant of the above coherence law for the inverse of the braiding.

inv-braiding-coherence : [ unit ⊗₀ X  X ]⟨
                           σ⇐            ⇒⟨ X ⊗₀ unit 
                           ρ⇒
                          λ⇒
                         
inv-braiding-coherence =  (switch-fromtoʳ σ braiding-coherence)

-- Reversing a ternary product via braiding commutes with the associator.

assoc-reverse : [ X ⊗₀ (Y ⊗₀ Z)  (X ⊗₀ Y) ⊗₀ Z ]⟨
                  id ⊗₁ σ⇒      ⇒⟨ X ⊗₀ (Z ⊗₀ Y) 
                  σ⇒            ⇒⟨ (Z ⊗₀ Y) ⊗₀ X 
                  α⇒            ⇒⟨ Z ⊗₀ (Y ⊗₀ X) 
                  id ⊗₁ σ⇐      ⇒⟨ Z ⊗₀ (X ⊗₀ Y) 
                  σ⇐
                 α⇐
                
assoc-reverse = begin
  σ⇐  id ⊗₁ σ⇐  α⇒  σ⇒  id ⊗₁ σ⇒    ≈⟨ refl⟩∘⟨ assoc²εβ 
  σ⇐  (id ⊗₁ σ⇐  α⇒  σ⇒)  id ⊗₁ σ⇒  ≈⟨ refl⟩∘⟨ pushˡ hex₁' 
  σ⇐  (α⇒  σ⇒ ⊗₁ id)  α⇐  id ⊗₁ σ⇒  ≈⟨ refl⟩∘⟨ pullʳ (sym-assoc  hexagon₂) 
  σ⇐  α⇒  (α⇐  σ⇒)  α⇐              ≈⟨ refl⟩∘⟨ pullˡ (cancelˡ associator.isoʳ) 
  σ⇐  σ⇒  α⇐                          ≈⟨ cancelˡ (braiding.iso.isoˡ _) 
  α⇐                                    
  where
    hex₁' = conjugate-from associator (idᵢ ⊗ᵢ σ) ( (hexagon₁  sym-assoc))