module Cubical.Data.Nat.GCD where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism

open import Cubical.Induction.WellFounded

open import Cubical.Data.Sigma as Σ
open import Cubical.Data.Fin   as F hiding (_%_ ; _/_)
open import Cubical.Data.NatPlusOne

open import Cubical.HITs.PropositionalTruncation as PropTrunc

open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Data.Nat.Order
open import Cubical.Data.Nat.Mod renaming (
  quotient'_/_  to _/_ ; remainder'_/_ to _%_
  ; ≡remainder'+quotient' to ≡%+·/ ; mod'< to %< )
open import Cubical.Data.Nat.Divisibility

open import Cubical.Relation.Nullary

private
  variable
    m n d : 

-- common divisors

isCD :       Type₀
isCD m n d = (d  m) × (d  n)

isPropIsCD : isProp (isCD m n d)
isPropIsCD = isProp× isProp∣ isProp∣

symCD : isCD m n d  isCD n m d
symCD (d∣m , d∣n) = (d∣n , d∣m)

-- greatest common divisors

isGCD :       Type₀
isGCD m n d = (isCD m n d) × (∀ d'  isCD m n d'  d'  d)

GCD :     Type₀
GCD m n = Σ  (isGCD m n)

isPropIsGCD : isProp (isGCD m n d)
isPropIsGCD = isProp× isPropIsCD (isPropΠ2  _ _  isProp∣))

isPropGCD : isProp (GCD m n)
isPropGCD (d , dCD , gr) (d' , d'CD , gr') =
  Σ≡Prop  _  isPropIsGCD) (antisym∣ (gr' d dCD) (gr d' d'CD))


symGCD : isGCD m n d  isGCD n m d
symGCD (dCD , gr) = symCD dCD , λ { d' d'CD  gr d' (symCD d'CD) }

divsGCD : m  n  isGCD m n m
divsGCD p = (∣-refl refl , p) , λ { d (d∣m , _)  d∣m }

oneGCD :  m  isGCD m 1 1
oneGCD m = symGCD (divsGCD (∣-oneˡ m))


-- The base case of the Euclidean algorithm
zeroGCD :  m  isGCD m 0 m
zeroGCD m = divsGCD (∣-zeroʳ m)

-- a pair of useful lemmas about ∣ and (efficient) %
private
  ∣→∣% :  {m n d}  d  m  d  n  d  (m % n)
  ∣%→∣ :  {m n d}  d  (m % n)  d  n  d  m

∣→∣% {m} {0}         {d} d∣m d∣n = d∣m
∣→∣% {m} {n@(suc _)} {d} d∣m d∣n =
  let
    k₁     = ∣-untrunc d∣m .fst
    k₁·d≡m = ∣-untrunc d∣m .snd
    k₂     = ∣-untrunc d∣n .fst
    k₂·d≡n = ∣-untrunc d∣n .snd
    p      =
      (k₁  m / n · k₂) · d         ≡⟨ ∸-distribʳ k₁ (m / n · k₂) d 
      k₁ · d  m / n · k₂ · d       ≡⟨ sym $ cong (k₁ · d ∸_) (·-assoc (m / n) _ _) 
      k₁ · d  m / n · (k₂ · d)     ≡⟨ cong₂  l r  l  m / n · r) k₁·d≡m k₂·d≡n 
      m  m / n · n                 ≡⟨ cong (m ∸_) (·-comm (m / n) n) 
      m  n · m / n                 ≡⟨ sym $ cong (_∸ n · m / n) (≡%+·/ n m)  
      m % n + n · m / n  n · m / n ≡⟨ +∸ (m % n) (n · m / n) 
      m % n                         
  in
     k₁  m / n · k₂ , p ∣₁

∣%→∣ {m} {0}         {d} d∣m%n d∣n = d∣m%n
∣%→∣ {m} {n@(suc _)} {d} d∣m%n d∣n =
  let
    k₁       = ∣-untrunc d∣m%n .fst
    k₁·d≡m%n = ∣-untrunc d∣m%n .snd
    k₂       = ∣-untrunc d∣n   .fst
    k₂·d≡n   = ∣-untrunc d∣n   .snd
    p        =
      (k₁ + k₂ · m / n) · d     ≡⟨ sym $ ·-distribʳ k₁ (k₂ · m / n) d 
      k₁ · d + k₂ · m / n · d   ≡⟨ cong  p  k₁ · d + p · d) (·-comm k₂ (m / n)) 
      k₁ · d + m / n · k₂ · d   ≡⟨ sym $ cong (k₁ · d +_) (·-assoc (m / n) k₂ d) 
      k₁ · d + m / n · (k₂ · d) ≡⟨ cong₂  l r  l + m / n · r) k₁·d≡m%n k₂·d≡n 
      m % n + m / n · n         ≡⟨ cong (m % n +_) (·-comm (m / n) n) 
      m % n + n · m / n         ≡⟨ ≡%+·/ n m 
      m                         
  in
     k₁ + k₂ · m / n , p ∣₁

-- The inductive step of the Euclidean algorithm
stepGCD : isGCD (suc n) (m % suc n) d
         isGCD m       (suc n)     d
stepGCD w =
  let
    g∣1+n            = w .fst .fst
    g∣m%1+n          = w .fst .snd
    d∣1+n→d∣m%1+n→d∣g = w .snd
  in
    (∣%→∣ g∣m%1+n g∣1+n , g∣1+n) ,
    λ d' (d'∣m , d'∣1+n)  d∣1+n→d∣m%1+n→d∣g d' (d'∣1+n , (∣→∣% d'∣m d'∣1+n))

-- putting it all together using an auxiliary variable to pass the termination checking

private
  euclid-helper< : (m n f : )  (n < m)  (m  f)  GCD m n
  euclid-helper< m       n       zero    n<m m≤0 .fst = 0
  euclid-helper< m       n       zero    n<m m≤0 .snd .fst .fst = ∣-refl $ sym $ ≤0→≡0 m≤0
  euclid-helper< m       n       zero    n<m m≤0 .snd .fst .snd = ∣-refl $ sym $ ≤0→≡0 $
                                                              <-weaken $ <≤-trans n<m m≤0
  euclid-helper< m       n       zero    n<m m≤0 .snd .snd d' _ = ∣-zeroʳ d'
  euclid-helper< zero    zero    (suc _) _   _   .fst = 0
  euclid-helper< zero    zero    (suc _) _   _   .snd .fst .fst = ∣-refl refl
  euclid-helper< zero    zero    (suc _) _   _   .snd .fst .snd = ∣-refl refl
  euclid-helper< zero    zero    (suc _) _   _   .snd .snd d' _ = ∣-zeroʳ d'
  euclid-helper< zero    (suc n) (suc _) _   _   .fst = suc n
  euclid-helper< zero    (suc n) (suc _) _   _   .snd .fst .fst = ∣-zeroʳ (suc n)
  euclid-helper< zero    (suc n) (suc _) _   _   .snd .fst .snd = ∣-refl refl
  euclid-helper< zero    (suc n) (suc _) _   _   .snd .snd d' (_ , d'∣1+n) = d'∣1+n
  euclid-helper< (suc m) zero    (suc _) _   _   .fst = suc m
  euclid-helper< (suc m) zero    (suc _) _   _   .snd .fst .fst = ∣-refl refl
  euclid-helper< (suc m) zero    (suc _) _   _   .snd .fst .snd = ∣-zeroʳ (suc m)
  euclid-helper< (suc m) zero    (suc _) _   _   .snd .snd d' (d'∣1+m , _) = d'∣1+m
  euclid-helper< m@(suc _) n@(suc n-1) (suc f) n<m m≤1+f =
    let
      n≤f = predℕ-≤-predℕ $ <≤-trans n<m m≤1+f
      r   = euclid-helper< n (m % n) f (%< n-1 m) n≤f
    in
      r .fst , stepGCD (r .snd)

euclid :  m n  GCD m n
euclid m zero        = m , (∣-refl refl , ∣-zeroʳ m) , λ d' (d'∣m , _)  d'∣m
euclid m n@(suc n-1) =
  let
    r = euclid-helper< n (m % n) n (%< n-1 m) ≤-refl
  in
    r .fst , stepGCD (r .snd)


isContrGCD :  m n  isContr (GCD m n)
isContrGCD m n = euclid m n , isPropGCD _

-- the gcd operator on ℕ

gcd :     
gcd m n = euclid m n .fst

gcdIsGCD :  m n  isGCD m n (gcd m n)
gcdIsGCD m n = euclid m n .snd

isGCD→gcd≡ : isGCD m n d  gcd m n  d
isGCD→gcd≡ dGCD = cong fst (isContrGCD _ _ .snd (_ , dGCD))

gcd≡→isGCD : gcd m n  d  isGCD m n d
gcd≡→isGCD p = subst (isGCD _ _) p (gcdIsGCD _ _)


-- multiplicative properties of the gcd

isCD-cancelʳ :  k  isCD (m · suc k) (n · suc k) (d · suc k)
                    isCD m n d
isCD-cancelʳ k (dk∣mk , dk∣nk) = (∣-cancelʳ k dk∣mk , ∣-cancelʳ k dk∣nk)

isCD-multʳ :  k  isCD m n d
                  isCD (m · k) (n · k) (d · k)
isCD-multʳ k (d∣m , d∣n) = (∣-multʳ k d∣m , ∣-multʳ k d∣n)

isGCD-cancelʳ :  k  isGCD (m · suc k) (n · suc k) (d · suc k)
                     isGCD m n d
isGCD-cancelʳ {m} {n} {d} k (dCD , gr) =
  isCD-cancelʳ k dCD ,  λ d' d'CD  ∣-cancelʳ k (gr (d' · suc k) (isCD-multʳ (suc k) d'CD))

gcd-factorʳ :  m n k  gcd (m · k) (n · k)  gcd m n · k
gcd-factorʳ m n zero =  i  gcd (0≡m·0 m (~ i)) (0≡m·0 n (~ i)))  0≡m·0 (gcd m n)
gcd-factorʳ m n (suc k) = sym p  cong ( suc k) (sym q)
  where k∣gcd : suc k  gcd (m · suc k) (n · suc k)
        k∣gcd = gcdIsGCD (m · suc k) (n · suc k) .snd (suc k) (∣-right m , ∣-right n)
        d' = ∣-untrunc k∣gcd .fst
        p : d' · suc k  gcd (m · suc k) (n · suc k)
        p = ∣-untrunc k∣gcd .snd

        d'GCD : isGCD m n d'
        d'GCD = isGCD-cancelʳ _ (subst (isGCD _ _) (sym p) (gcdIsGCD (m · suc k) (n · suc k)))
        q : gcd m n  d'
        q = isGCD→gcd≡ d'GCD

-- Q: Can this be proved directly? (i.e. without a transport)
isGCD-multʳ :  k  isGCD m n d
                   isGCD (m · k) (n · k) (d · k)
isGCD-multʳ {m} {n} {d} k dGCD = gcd≡→isGCD (gcd-factorʳ m n k  cong ( k) r)
  where r : gcd m n  d
        r = isGCD→gcd≡ dGCD

-- Inequality for strict divisibility

stDivIneqGCD : ¬ m  0  ¬ m  n  (g : GCD m n)  g .fst < m
stDivIneqGCD p q g = stDivIneq p q (g .snd .fst .fst) (g .snd .fst .snd)

-- Alternative definition of GCD using % from Cubical.Data.Fin and well-founded induction

private
  lem₁ : prediv d (suc n)  prediv d (m F.% suc n)  prediv d m
  lem₁ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = (q · c₁ + c₂) , p
    where r = m F.% suc n; q = n%k≡n[modk] m (suc n) .fst
          p = (q · c₁ + c₂) · d     ≡⟨ sym (·-distribʳ (q · c₁) c₂ d) 
              (q · c₁) · d + c₂ · d ≡⟨ cong (_+ c₂ · d) (sym (·-assoc q c₁ d))  
              q · (c₁ · d) + c₂ · d ≡[ i ]⟨ q · (p₁ i) + (p₂ i) 
              q · (suc n)  + r      ≡⟨ n%k≡n[modk] m (suc n) .snd 
              m                     

  lem₂ : prediv d (suc n)  prediv d m  prediv d (m F.% suc n)
  lem₂ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = c₂  q · c₁ , p
    where r = m F.% suc n; q = n%k≡n[modk] m (suc n) .fst
          p = (c₂  q · c₁) · d               ≡⟨ ∸-distribʳ c₂ (q · c₁) d 
              c₂ · d  (q · c₁) · d           ≡⟨ cong (c₂ · d ∸_) (sym (·-assoc q c₁ d)) 
              c₂ · d  q · (c₁ · d)           ≡[ i ]⟨ p₂ i  q · (p₁ i) 
              m       q · (suc n)            ≡⟨ cong (_∸ q · (suc n)) (sym (n%k≡n[modk] m (suc n) .snd)) 
              (q · (suc n) + r)  q · (suc n) ≡⟨ cong (_∸ q · (suc n)) (+-comm (q · (suc n)) r) 
              (r + q · (suc n))  q · (suc n) ≡⟨ ∸-cancelʳ r zero (q · (suc n)) 
              r 

-- The inductive step of the Euclidean algorithm
stepGCD' : isGCD (suc n) (m F.% suc n) d
         isGCD m       (suc n)     d
fst (stepGCD' ((d∣n , d∣m%n) , gr)) = PropTrunc.map2 lem₁ d∣n d∣m%n , d∣n
snd (stepGCD' ((d∣n , d∣m%n) , gr)) d' (d'∣m , d'∣n) = gr d' (d'∣n , PropTrunc.map2 lem₂ d'∣n d'∣m)

-- putting it all together using well-founded induction

euclid'< :  m n  n < m  GCD m n
euclid'< = WFI.induction <-wellfounded λ {
  m rec zero    p  m , zeroGCD m ;
  m rec (suc n) p  let d , dGCD = rec (suc n) p (m F.% suc n) (n%sk<sk m n)
                     in d , stepGCD' dGCD }

euclid' :  m n  GCD m n
euclid' m n with n  m
... | lt p = euclid'< m n p
... | gt p = Σ.map-snd symGCD (euclid'< n m p)
... | eq p = m , divsGCD (∣-refl (sym p))

gcd' :     
gcd' m n = euclid' m n .fst

euclid≡euclid' :  m n  euclid m n  euclid' m n
euclid≡euclid' m n = isPropGCD (euclid m n) (euclid' m n)

gcd≡gcd' :  m n  gcd m n  gcd' m n
gcd≡gcd' m n = cong fst (euclid≡euclid' m n)