{-# OPTIONS --safe #-}
module Cubical.Data.Fin.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Functions.Embedding
open import Cubical.Functions.Surjection
open import Cubical.HITs.PropositionalTruncation renaming (rec to ∥∥rec)
open import Cubical.Data.Fin.Base as Fin
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.FinData.Base renaming (Fin to FinData) hiding (¬Fin0 ; toℕ)
open import Cubical.Relation.Nullary
open import Cubical.Induction.WellFounded
open import Cubical.Algebra.AbGroup.Base
private
variable
a b ℓ : Level
n : ℕ
A : Type a
isPropFin0 : isProp (Fin 0)
isPropFin0 = Empty.rec ∘ ¬Fin0
isContrFin1 : isContr (Fin 1)
isContrFin1
= fzero , λ
{ (zero , _) → toℕ-injective refl
; (suc k , sk<1) → Empty.rec (¬-<-zero (pred-≤-pred sk<1))
}
Unit≃Fin1 : Unit ≃ Fin 1
Unit≃Fin1 =
isoToEquiv
(iso
(const fzero)
(const tt)
(isContrFin1 .snd)
(isContrUnit .snd)
)
isSetFin : ∀{k} → isSet (Fin k)
isSetFin {k} = isSetΣ isSetℕ (λ _ → isProp→isSet isProp≤)
discreteFin : ∀ {n} → Discrete (Fin n)
discreteFin {n} (x , hx) (y , hy) with discreteℕ x y
... | yes prf = yes (Σ≡Prop (λ _ → isProp≤) prf)
... | no prf = no λ h → prf (cong fst h)
inject<-ne : ∀ {n} (i : Fin n) → ¬ inject< ≤-refl i ≡ (n , ≤-refl)
inject<-ne {n} (k , k<n) p = <→≢ k<n (cong fst p)
Fin-fst-≡ : ∀ {n} {i j : Fin n} → fst i ≡ fst j → i ≡ j
Fin-fst-≡ = Σ≡Prop (λ _ → isProp≤)
private
subst-app : (B : A → Type b) (f : (x : A) → B x) {x y : A} (x≡y : x ≡ y) →
subst B x≡y (f x) ≡ f y
subst-app B f {x = x} =
J (λ y e → subst B e (f x) ≡ f y) (substRefl {B = B} (f x))
module _ (P : ∀ {k} → Fin k → Type ℓ)
(fz : ∀ {k} → P {suc k} fzero)
(fs : ∀ {k} {fn : Fin k} → P fn → P (fsuc fn))
{k : ℕ} where
elim-fzero : Fin.elim P fz fs {k = suc k} fzero ≡ fz
elim-fzero =
subst P (toℕ-injective _) fz ≡⟨ cong (λ p → subst P p fz) (isSetFin _ _ _ _) ⟩
subst P refl fz ≡⟨ substRefl {B = P} fz ⟩
fz ∎
elim-fsuc : (fk : Fin k) → Fin.elim P fz fs (fsuc fk) ≡ fs (Fin.elim P fz fs fk)
elim-fsuc fk =
subst P (toℕ-injective (λ _ → toℕ (fsuc fk′))) (fs (Fin.elim P fz fs fk′))
≡⟨ cong (λ p → subst P p (fs (Fin.elim P fz fs fk′)) ) (isSetFin _ _ _ _) ⟩
subst P (cong fsuc fk′≡fk) (fs (Fin.elim P fz fs fk′))
≡⟨ subst-app _ (λ fj → fs (Fin.elim P fz fs fj)) fk′≡fk ⟩
fs (Fin.elim P fz fs fk)
∎
where
fk′ = fst fk , pred-≤-pred (snd (fsuc fk))
fk′≡fk : fk′ ≡ fk
fk′≡fk = toℕ-injective refl
expand : ℕ → ℕ → ℕ → ℕ
expand 0 k m = m
expand (suc o) k m = k + expand o k m
expand≡ : ∀ k m o → expand o k m ≡ o · k + m
expand≡ k m zero = refl
expand≡ k m (suc o)
= cong (k +_) (expand≡ k m o) ∙ +-assoc k (o · k) m
expand× : ∀{k} → (Fin k × ℕ) → ℕ
expand× {k} (f , o) = expand o k (toℕ f)
private
lemma₀ : ∀{k m n r} → r ≡ n → k + m ≡ n → k ≤ r
lemma₀ {k = k} {m} p q = m , +-comm m k ∙ q ∙ sym p
expand×Inj : ∀ k → {t1 t2 : Fin (suc k) × ℕ} → expand× t1 ≡ expand× t2 → t1 ≡ t2
expand×Inj k {f1 , zero} {f2 , zero} p i
= toℕ-injective {fj = f1} {f2} p i , zero
expand×Inj k {f1 , suc o1} {(r , r<sk) , zero} p
= Empty.rec (<-asym r<sk (lemma₀ refl p))
expand×Inj k {(r , r<sk) , zero} {f2 , suc o2} p
= Empty.rec (<-asym r<sk (lemma₀ refl (sym p)))
expand×Inj k {f1 , suc o1} {f2 , suc o2}
= cong (λ { (f , o) → (f , suc o) })
∘ expand×Inj k {f1 , o1} {f2 , o2}
∘ inj-m+ {suc k}
expand×Emb : ∀ k → isEmbedding (expand× {k})
expand×Emb 0 = Empty.rec ∘ ¬Fin0 ∘ fst
expand×Emb (suc k)
= injEmbedding isSetℕ (expand×Inj k)
Residue : ℕ → ℕ → Type₀
Residue k n = Σ[ tup ∈ Fin k × ℕ ] expand× tup ≡ n
isPropResidue : ∀ k n → isProp (Residue k n)
isPropResidue k = isEmbedding→hasPropFibers (expand×Emb k)
Fin→Residue : ∀{k} → (f : Fin k) → Residue k (toℕ f)
Fin→Residue f = (f , 0) , refl
Residue+k : (k n : ℕ) → Residue k n → Residue k (k + n)
Residue+k k n ((f , o) , p) = (f , suc o) , cong (k +_) p
Residue-k : (k n : ℕ) → Residue k (k + n) → Residue k n
Residue-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue-k k n ((f , suc o) , p) = ((f , o) , inj-m+ p)
Residue+k-k
: (k n : ℕ)
→ (R : Residue k (k + n))
→ Residue+k k n (Residue-k k n R) ≡ R
Residue+k-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue+k-k k n ((f , suc o) , p)
= Σ≡Prop (λ tup → isSetℕ (expand× tup) (k + n)) refl
Residue-k+k
: (k n : ℕ)
→ (R : Residue k n)
→ Residue-k k n (Residue+k k n R) ≡ R
Residue-k+k k n ((f , o) , p)
= Σ≡Prop (λ tup → isSetℕ (expand× tup) n) refl
private
Residue≃ : ∀ k n → Residue k n ≃ Residue k (k + n)
Residue≃ k n
= Residue+k k n
, isoToIsEquiv (iso (Residue+k k n) (Residue-k k n)
(Residue+k-k k n) (Residue-k+k k n))
Residue≡ : ∀ k n → Residue k n ≡ Residue k (k + n)
Residue≡ k n = ua (Residue≃ k n)
module Reduce (k₀ : ℕ) where
k : ℕ
k = suc k₀
base : ∀ n (n<k : n < k) → Residue k n
base n n<k = Fin→Residue (n , n<k)
step : ∀ n → Residue k n → Residue k (k + n)
step n = transport (Residue≡ k n)
reduce : ∀ n → Residue k n
reduce = +induction k₀ (Residue k) base step
reduce≡
: ∀ n → transport (Residue≡ k n) (reduce n) ≡ reduce (k + n)
reduce≡ n
= sym (+inductionStep k₀ _ base step n)
reduceP
: ∀ n → PathP (λ i → Residue≡ k n i) (reduce n) (reduce (k + n))
reduceP n = toPathP (reduce≡ n)
open Reduce using (reduce; reduce≡) public
extract : ∀{k n} → Residue k n → Fin k
extract = fst ∘ fst
private
lemma₅
: ∀ k n (R : Residue k n)
→ extract R ≡ extract (transport (Residue≡ k n) R)
lemma₅ k n = sym ∘ cong extract ∘ uaβ (Residue≃ k n)
extract≡ : ∀ k n → extract (reduce k n) ≡ extract (reduce k (suc k + n))
extract≡ k n
= lemma₅ (suc k) n (reduce k n) ∙ cong extract (Reduce.reduce≡ k n)
isContrResidue : ∀{k n} → isContr (Residue (suc k) n)
isContrResidue {k} {n} = inhProp→isContr (reduce k n) (isPropResidue (suc k) n)
_%_ : ℕ → ℕ → ℕ
n % zero = n
n % (suc k) = toℕ (extract (reduce k n))
_/_ : ℕ → ℕ → ℕ
n / zero = zero
n / (suc k) = reduce k n .fst .snd
moddiv : ∀ n k → (n / k) · k + n % k ≡ n
moddiv n zero = refl
moddiv n (suc k) = sym (expand≡ _ _ (n / suc k)) ∙ reduce k n .snd
n%k≡n[modk] : ∀ n k → Σ[ o ∈ ℕ ] o · k + n % k ≡ n
n%k≡n[modk] n k = (n / k) , moddiv n k
n%sk<sk : (n k : ℕ) → (n % suc k) < suc k
n%sk<sk n k = extract (reduce k n) .snd
fznotfs : ∀ {m : ℕ} {k : Fin m} → ¬ fzero ≡ fsuc k
fznotfs {m} p = subst F p tt
where
F : Fin (suc m) → Type₀
F (zero , _) = Unit
F (suc _ , _) = ⊥
fsuc-inj : {fj fk : Fin n} → fsuc fj ≡ fsuc fk → fj ≡ fk
fsuc-inj = toℕ-injective ∘ injSuc ∘ cong toℕ
punchOut : ∀ {m} {i j : Fin (suc m)} → (¬ i ≡ j) → Fin m
punchOut {_} {i} {j} p with fsplit i | fsplit j
punchOut {_} {i} {j} p | inl prfi | inl prfj =
Empty.elim (p (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfj ⟩ j ∎))
punchOut {_} {i} {j} p | inl prfi | inr (kj , prfj) =
kj
punchOut {zero} {i} {j} p | inr (ki , prfi) | inl prfj =
Empty.elim (p (
i ≡⟨ sym (isContrFin1 .snd i) ⟩
c ≡⟨ isContrFin1 .snd j ⟩
j ∎
))
where c = isContrFin1 .fst
punchOut {suc _} {i} {j} p | inr (ki , prfi) | inl prfj =
fzero
punchOut {zero} {i} {j} p | inr (ki , prfi) | inr (kj , prfj) =
Empty.elim ((p (
i ≡⟨ sym (isContrFin1 .snd i) ⟩
c ≡⟨ isContrFin1 .snd j ⟩
j ∎)
))
where c = isContrFin1 .fst
punchOut {suc _} {i} {j} p | inr (ki , prfi) | inr (kj , prfj) =
fsuc (punchOut {i = ki} {j = kj}
(λ q → p (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kj ≡⟨ prfj ⟩ j ∎))
)
punchOut-inj
: ∀ {m} {i j k : Fin (suc m)} (i≢j : ¬ i ≡ j) (i≢k : ¬ i ≡ k)
→ punchOut i≢j ≡ punchOut i≢k → j ≡ k
punchOut-inj {_} {i} {j} {k} i≢j i≢k p with fsplit i | fsplit j | fsplit k
punchOut-inj {zero} {i} {j} {k} i≢j i≢k p | _ | _ | _ =
Empty.elim (i≢j (i ≡⟨ sym (isContrFin1 .snd i) ⟩ c ≡⟨ isContrFin1 .snd j ⟩ j ∎))
where c = isContrFin1 .fst
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | inl prfj | _ =
Empty.elim (i≢j (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfj ⟩ j ∎))
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | _ | inl prfk =
Empty.elim (i≢k (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfk ⟩ k ∎))
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | inr (kj , prfj) | inr (kk , prfk) =
j ≡⟨ sym prfj ⟩
fsuc kj ≡⟨ cong fsuc p ⟩
fsuc kk ≡⟨ prfk ⟩
k ∎
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inl prfj | inl prfk =
j ≡⟨ sym prfj ⟩
fzero ≡⟨ prfk ⟩
k ∎
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inr (kj , prfj) | inr (kk , prfk) =
j ≡⟨ sym prfj ⟩
fsuc kj ≡⟨ cong fsuc lemma4 ⟩
fsuc kk ≡⟨ prfk ⟩
k ∎
where
lemma1 = λ q → i≢j (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kj ≡⟨ prfj ⟩ j ∎)
lemma2 = λ q → i≢k (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kk ≡⟨ prfk ⟩ k ∎)
lemma3 = fsuc-inj p
lemma4 = punchOut-inj lemma1 lemma2 lemma3
punchOut-inj {suc m} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inl prfj | inr (kk , prfk) =
Empty.rec (fznotfs p)
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inr (kj , prfj) | inl prfk =
Empty.rec (fznotfs (sym p))
pigeonhole-special
: ∀ {n}
→ (f : Fin (suc n) → Fin n)
→ Σ[ i ∈ Fin (suc n) ] Σ[ j ∈ Fin (suc n) ] (¬ i ≡ j) × (f i ≡ f j)
pigeonhole-special {zero} f = Empty.rec (¬Fin0 (f fzero))
pigeonhole-special {suc n} f =
proof (any?
(λ (i : Fin (suc n)) →
discreteFin (f (inject< ≤-refl i)) (f (suc n , ≤-refl))
))
where
proof
: Dec (Σ (Fin (suc n)) (λ z → f (inject< ≤-refl z) ≡ f (suc n , ≤-refl)))
→ Σ[ i ∈ Fin (suc (suc n)) ] Σ[ j ∈ Fin (suc (suc n)) ] (¬ i ≡ j) × (f i ≡ f j)
proof (yes (i , prf)) = inject< ≤-refl i , (suc n , ≤-refl) , inject<-ne i , prf
proof (no h) =
let
g : Fin (suc n) → Fin n
g k = punchOut
{i = f (suc n , ≤-refl)}
{j = f (inject< ≤-refl k)}
(λ p → h (k , Fin-fst-≡ (sym (cong fst p))))
i , j , i≢j , p = pigeonhole-special g
in
inject< ≤-refl i
, inject< ≤-refl j
, (λ q → i≢j (Fin-fst-≡ (cong fst q)))
, punchOut-inj
{i = f (suc n , ≤-refl)}
{j = f (inject< ≤-refl i)}
{k = f (inject< ≤-refl j)}
(λ q → h (i , Fin-fst-≡ (sym (cong fst q))))
(λ q → h (j , Fin-fst-≡ (sym (cong fst q))))
(Fin-fst-≡ (cong fst p))
pigeonhole
: ∀ {m n}
→ m < n
→ (f : Fin n → Fin m)
→ Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j)
pigeonhole {m} {n} (zero , sm≡n) f =
transport transport-prf (pigeonhole-special f′)
where
f′ : Fin (suc m) → Fin m
f′ = subst (λ h → Fin h → Fin m) (sym sm≡n) f
f′≡f : PathP (λ i → Fin (sm≡n i) → Fin m) f′ f
f′≡f i = transport-fillerExt (cong (λ h → Fin h → Fin m) (sym sm≡n)) (~ i) f
transport-prf
: (Σ[ i ∈ Fin (suc m) ] Σ[ j ∈ Fin (suc m) ] (¬ i ≡ j) × (f′ i ≡ f′ j))
≡ (Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j))
transport-prf φ =
Σ[ i ∈ Fin (sm≡n φ) ] Σ[ j ∈ Fin (sm≡n φ) ]
(¬ i ≡ j) × (f′≡f φ i ≡ f′≡f φ j)
pigeonhole {m} {n} (suc k , prf) f =
let
g : Fin (suc n′) → Fin n′
g k = fst (f′ k) , <-trans (snd (f′ k)) m<n′
i , j , ¬q , r = pigeonhole-special g
in transport transport-prf (i , j , ¬q , Σ≡Prop (λ _ → isProp≤) (cong fst r))
where
n′ : ℕ
n′ = k + suc m
n≡sn′ : n ≡ suc n′
n≡sn′ =
n ≡⟨ sym prf ⟩
suc (k + suc m) ≡⟨ refl ⟩
suc n′ ∎
m<n′ : m < n′
m<n′ = k , injSuc (suc (k + suc m) ≡⟨ prf ⟩ n ≡⟨ n≡sn′ ⟩ suc n′ ∎)
f′ : Fin (suc n′) → Fin m
f′ = subst (λ h → Fin h → Fin m) n≡sn′ f
f′≡f : PathP (λ i → Fin (n≡sn′ (~ i)) → Fin m) f′ f
f′≡f i = transport-fillerExt (cong (λ h → Fin h → Fin m) n≡sn′) (~ i) f
transport-prf
: (Σ[ i ∈ Fin (suc n′) ] Σ[ j ∈ Fin (suc n′) ] (¬ i ≡ j) × (f′ i ≡ f′ j))
≡ (Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j))
transport-prf φ =
Σ[ i ∈ Fin (n≡sn′ (~ φ)) ] Σ[ j ∈ Fin (n≡sn′ (~ φ)) ]
(¬ i ≡ j) × (f′≡f φ i ≡ f′≡f φ j)
Fin-inj′ : {n m : ℕ} → n < m → ¬ Fin m ≡ Fin n
Fin-inj′ n<m p =
let
i , j , i≢j , q = pigeonhole n<m (transport p)
in i≢j (
i ≡⟨ refl ⟩
fst (pigeonhole n<m (transport p)) ≡⟨ transport-p-inj {p = p} q ⟩
fst (snd (pigeonhole n<m (transport p))) ≡⟨ refl ⟩
j ∎
)
where
transport-p-inj
: ∀ {A B : Type ℓ} {x y : A} {p : A ≡ B}
→ transport p x ≡ transport p y
→ x ≡ y
transport-p-inj {x = x} {y = y} {p = p} q =
x ≡⟨ sym (transport⁻Transport p x) ⟩
transport (sym p) (transport p x) ≡⟨ cong (transport (sym p)) q ⟩
transport (sym p) (transport p y) ≡⟨ transport⁻Transport p y ⟩
y ∎
Fin-inj : (n m : ℕ) → Fin n ≡ Fin m → n ≡ m
Fin-inj n m p with n ≟ m
... | eq prf = prf
... | lt n<m = Empty.rec (Fin-inj′ n<m (sym p))
... | gt n>m = Empty.rec (Fin-inj′ n>m p)
≤-·sk-cancel : ∀ {m} {k} {n} → m · suc k ≤ n · suc k → m ≤ n
≤-·sk-cancel {m} {k} {n} (d , p) = o , inj-·sm {m = k} goal where
r = d % suc k
o = d / suc k
resn·k : Residue (suc k) (n · suc k)
resn·k = ((r , n%sk<sk d k) , (o + m)) , reason where
reason = expand× ((r , n%sk<sk d k) , o + m) ≡⟨ expand≡ (suc k) r (o + m) ⟩
(o + m) · suc k + r ≡[ i ]⟨ +-comm (·-distribʳ o m (suc k) (~ i)) r i ⟩
r + (o · suc k + m · suc k) ≡⟨ +-assoc r (o · suc k) (m · suc k) ⟩
(r + o · suc k) + m · suc k ≡⟨ cong (_+ m · suc k) (+-comm r (o · suc k) ∙ moddiv d (suc k)) ⟩
d + m · suc k ≡⟨ p ⟩
n · suc k ∎
residuek·n : ∀ k n → (r : Residue (suc k) (n · suc k)) → ((fzero , n) , expand≡ (suc k) 0 n ∙ +-zero _) ≡ r
residuek·n _ _ = isContr→isProp isContrResidue _
r≡0 : r ≡ 0
r≡0 = cong (toℕ ∘ extract) (sym (residuek·n k n resn·k))
d≡o·sk : d ≡ o · suc k
d≡o·sk = sym (moddiv d (suc k)) ∙∙ cong (o · suc k +_) r≡0 ∙∙ +-zero _
goal : (o + m) · suc k ≡ n · suc k
goal = sym (·-distribʳ o m (suc k)) ∙∙ cong (_+ m · suc k) (sym d≡o·sk) ∙∙ p
<-·sk-cancel : ∀ {m} {k} {n} → m · suc k < n · suc k → m < n
<-·sk-cancel {m} {k} {n} p = goal where
≤-helper : m ≤ n
≤-helper = ≤-·sk-cancel (pred-≤-pred (<≤-trans p (≤-suc ≤-refl)))
goal : m < n
goal = case <-split (suc-≤-suc ≤-helper) of λ
{ (inl g) → g
; (inr e) → Empty.rec (¬m<m (subst (λ m → m · suc k < n · suc k) e p))
}
factorEquiv : ∀ {n} {m} → Fin n × Fin m ≃ Fin (n · m)
factorEquiv {zero} {m} = uninhabEquiv (¬Fin0 ∘ fst) ¬Fin0
factorEquiv {suc n} {m} = intro , isEmbedding×isSurjection→isEquiv (isEmbeddingIntro , isSurjectionIntro) where
intro : Fin (suc n) × Fin m → Fin (suc n · m)
intro (nn , mm) = nm , subst (λ nm₁ → nm₁ < suc n · m) (sym (expand≡ _ (toℕ nn) (toℕ mm))) nm<n·m where
nm : ℕ
nm = expand× (nn , toℕ mm)
nm<n·m : toℕ mm · suc n + toℕ nn < suc n · m
nm<n·m =
toℕ mm · suc n + toℕ nn <≤⟨ <-k+ (snd nn) ⟩
toℕ mm · suc n + suc n ≡≤⟨ +-comm _ (suc n) ⟩
suc (toℕ mm) · suc n ≤≡⟨ ≤-·k (snd mm) ⟩
m · suc n ≡⟨ ·-comm _ (suc n) ⟩
suc n · m ∎ where open <-Reasoning
intro-injective : ∀ {o} {p} → intro o ≡ intro p → o ≡ p
intro-injective {o} {p} io≡ip = λ i → io′≡ip′ i .fst , toℕ-injective {fj = snd o} {fk = snd p} (cong snd io′≡ip′) i where
io′≡ip′ : (fst o , toℕ (snd o)) ≡ (fst p , toℕ (snd p))
io′≡ip′ = expand×Inj _ (cong fst io≡ip)
isEmbeddingIntro : isEmbedding intro
isEmbeddingIntro = injEmbedding isSetFin intro-injective
elimF : ∀ nm → fiber intro nm
elimF nm = ((nn , nn<n) , (mm , mm<m)) , toℕ-injective (reduce n (toℕ nm) .snd) where
mm = toℕ nm / suc n
nn = toℕ nm % suc n
nmmoddiv : mm · suc n + nn ≡ toℕ nm
nmmoddiv = moddiv _ (suc n)
nn<n : nn < suc n
nn<n = n%sk<sk (toℕ nm) _
nmsnd : mm · suc n + nn < suc n · m
nmsnd = subst (λ l → l < suc n · m) (sym nmmoddiv) (snd nm)
mm·sn<m·sn : mm · suc n < m · suc n
mm·sn<m·sn =
mm · suc n ≤<⟨ nn , +-comm nn (mm · suc n) ⟩
mm · suc n + nn <≡⟨ nmsnd ⟩
suc n · m ≡⟨ ·-comm (suc n) m ⟩
m · suc n ∎ where open <-Reasoning
mm<m : mm < m
mm<m = <-·sk-cancel mm·sn<m·sn
isSurjectionIntro : isSurjection intro
isSurjectionIntro = ∣_∣₁ ∘ elimF
o<m→o<m+n : (m n o : ℕ) → o < m → o < (m + n)
o<m→o<m+n m n o (k , p) = (n + k) , (n + k + suc o ≡⟨ sym (+-assoc n k _) ⟩
n + (k + suc o) ≡⟨ cong (λ - → n + -) p ⟩
n + m ≡⟨ +-comm n m ⟩
m + n ∎)
∸-<-lemma : (m n o : ℕ) → o < m + n → m ≤ o → o ∸ m < n
∸-<-lemma zero n o o<m+n m<o = o<m+n
∸-<-lemma (suc m) n zero o<m+n m<o = Empty.rec (¬-<-zero m<o)
∸-<-lemma (suc m) n (suc o) o<m+n m<o =
∸-<-lemma m n o (pred-≤-pred o<m+n) (pred-≤-pred m<o)
_≤?_ : (m n : ℕ) → (m < n) ⊎ (n ≤ m)
_≤?_ m n with m ≟ n
_≤?_ m n | lt m<n = inl m<n
_≤?_ m n | eq m=n = inr (subst (λ - → - ≤ m) m=n ≤-refl)
_≤?_ m n | gt n<m = inr (<-weaken n<m)
¬-<-and-≥ : {m n : ℕ} → m < n → ¬ n ≤ m
¬-<-and-≥ {m} {zero} m<n n≤m = ¬-<-zero m<n
¬-<-and-≥ {zero} {suc n} m<n n≤m = ¬-<-zero n≤m
¬-<-and-≥ {suc m} {suc n} m<n n≤m = ¬-<-and-≥ (pred-≤-pred m<n) (pred-≤-pred n≤m)
m+n∸n=m : (n m : ℕ) → (m + n) ∸ n ≡ m
m+n∸n=m zero k = +-zero k
m+n∸n=m (suc m) k = (k + suc m) ∸ suc m ≡⟨ cong (λ - → - ∸ suc m) (+-suc k m) ⟩
suc (k + m) ∸ (suc m) ≡⟨ refl ⟩
(k + m) ∸ m ≡⟨ m+n∸n=m m k ⟩
k ∎
∸-lemma : {m n : ℕ} → m ≤ n → m + (n ∸ m) ≡ n
∸-lemma {zero} {k} _ = refl {x = k}
∸-lemma {suc m} {zero} m≤k = Empty.rec (¬-<-and-≥ (suc-≤-suc zero-≤) m≤k)
∸-lemma {suc m} {suc k} m≤k =
suc m + (suc k ∸ suc m) ≡⟨ refl ⟩
suc (m + (suc k ∸ suc m)) ≡⟨ refl ⟩
suc (m + (k ∸ m)) ≡⟨ cong suc (∸-lemma (pred-≤-pred m≤k)) ⟩
suc k ∎
Fin+≅Fin⊎Fin : (m n : ℕ) → Iso (Fin (m + n)) (Fin m ⊎ Fin n)
Iso.fun (Fin+≅Fin⊎Fin m n) = f
where
f : Fin (m + n) → Fin m ⊎ Fin n
f (k , k<m+n) with k ≤? m
f (k , k<m+n) | inl k<m = inl (k , k<m)
f (k , k<m+n) | inr k≥m = inr (k ∸ m , ∸-<-lemma m n k k<m+n k≥m)
Iso.inv (Fin+≅Fin⊎Fin m n) = g
where
g : Fin m ⊎ Fin n → Fin (m + n)
g (inl (k , k<m)) = k , o<m→o<m+n m n k k<m
g (inr (k , k<n)) = m + k , <-k+ k<n
Iso.rightInv (Fin+≅Fin⊎Fin m n) = sec-f-g
where
sec-f-g : _
sec-f-g (inl (k , k<m)) with k ≤? m
sec-f-g (inl (k , k<m)) | inl _ = cong inl (Σ≡Prop (λ _ → isProp≤) refl)
sec-f-g (inl (k , k<m)) | inr m≤k = Empty.rec (¬-<-and-≥ k<m m≤k)
sec-f-g (inr (k , k<n)) with (m + k) ≤? m
sec-f-g (inr (k , k<n)) | inl p = Empty.rec (¬m+n<m {m} {k} p)
sec-f-g (inr (k , k<n)) | inr k≥m = cong inr (Σ≡Prop (λ _ → isProp≤) rem)
where
rem : (m + k) ∸ m ≡ k
rem = subst (λ - → - ∸ m ≡ k) (+-comm k m) (m+n∸n=m m k)
Iso.leftInv (Fin+≅Fin⊎Fin m n) = ret-f-g
where
ret-f-g : _
ret-f-g (k , k<m+n) with k ≤? m
ret-f-g (k , k<m+n) | inl _ = Σ≡Prop (λ _ → isProp≤) refl
ret-f-g (k , k<m+n) | inr m≥k = Σ≡Prop (λ _ → isProp≤) (∸-lemma m≥k)
Fin+≡Fin⊎Fin : (m n : ℕ) → Fin (m + n) ≡ Fin m ⊎ Fin n
Fin+≡Fin⊎Fin m n = isoToPath (Fin+≅Fin⊎Fin m n)
sucFin : {N : ℕ} → Fin N → Fin (suc N)
sucFin (k , n , p) = suc k , n , (+-suc _ _ ∙ cong suc p)
FinData→Fin : (N : ℕ) → FinData N → Fin N
FinData→Fin zero ()
FinData→Fin (suc N) zero = 0 , suc-≤-suc zero-≤
FinData→Fin (suc N) (suc k) = sucFin (FinData→Fin N k)
Fin→FinData : (N : ℕ) → Fin N → FinData N
Fin→FinData zero (k , n , p) = Empty.rec (snotz (sym (+-suc n k) ∙ p))
Fin→FinData (suc N) (0 , n , p) = zero
Fin→FinData (suc N) ((suc k) , n , p) = suc (Fin→FinData N (k , n , p')) where
p' : n + suc k ≡ N
p' = injSuc (sym (+-suc n (suc k)) ∙ p)
secFin : (n : ℕ) → section (FinData→Fin n) (Fin→FinData n)
secFin 0 (k , n , p) = Empty.rec (snotz (sym (+-suc n k) ∙ p))
secFin (suc N) (0 , n , p) = Fin-fst-≡ refl
secFin (suc N) (suc k , n , p) = Fin-fst-≡ (cong suc (cong fst (secFin N (k , n , p')))) where
p' : n + suc k ≡ N
p' = injSuc (sym (+-suc n (suc k)) ∙ p)
retFin : (n : ℕ) → retract (FinData→Fin n) (Fin→FinData n)
retFin 0 ()
retFin (suc N) zero = refl
retFin (suc N) (suc k) = cong FinData.suc (cong (Fin→FinData N) (Fin-fst-≡ refl) ∙ retFin N k)
FinDataIsoFin : (N : ℕ) → Iso (FinData N) (Fin N)
Iso.fun (FinDataIsoFin N) = FinData→Fin N
Iso.inv (FinDataIsoFin N) = Fin→FinData N
Iso.rightInv (FinDataIsoFin N) = secFin N
Iso.leftInv (FinDataIsoFin N) = retFin N
FinData≃Fin : (N : ℕ) → FinData N ≃ Fin N
FinData≃Fin N = isoToEquiv (FinDataIsoFin N)
FinData≡Fin : (N : ℕ) → FinData N ≡ Fin N
FinData≡Fin N = ua (FinData≃Fin N)
DecFin : (n : ℕ) → Dec (Fin n)
DecFin 0 = no ¬Fin0
DecFin (suc n) = yes fzero
Dec∥Fin∥ : (n : ℕ) → Dec ∥ Fin n ∥₁
Dec∥Fin∥ n = Dec∥∥ (DecFin n)
Fin>0→isInhab : (n : ℕ) → 0 < n → Fin n
Fin>0→isInhab 0 p = Empty.rec (¬-<-zero p)
Fin>0→isInhab (suc n) p = fzero
Fin>1→hasNonEqualTerm : (n : ℕ) → 1 < n → Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] ¬ i ≡ j
Fin>1→hasNonEqualTerm 0 p = Empty.rec (snotz (≤0→≡0 p))
Fin>1→hasNonEqualTerm 1 p = Empty.rec (snotz (≤0→≡0 (pred-≤-pred p)))
Fin>1→hasNonEqualTerm (suc (suc n)) _ = fzero , fone , fzero≠fone
isEmpty→Fin≡0 : (n : ℕ) → ¬ Fin n → 0 ≡ n
isEmpty→Fin≡0 0 _ = refl
isEmpty→Fin≡0 (suc n) p = Empty.rec (p fzero)
isInhab→Fin>0 : (n : ℕ) → Fin n → 0 < n
isInhab→Fin>0 0 i = Empty.rec (¬Fin0 i)
isInhab→Fin>0 (suc n) _ = suc-≤-suc zero-≤
hasNonEqualTerm→Fin>1 : (n : ℕ) → (i j : Fin n) → ¬ i ≡ j → 1 < n
hasNonEqualTerm→Fin>1 0 i _ _ = Empty.rec (¬Fin0 i)
hasNonEqualTerm→Fin>1 1 i j p = Empty.rec (p (isContr→isProp isContrFin1 i j))
hasNonEqualTerm→Fin>1 (suc (suc n)) _ _ _ = suc-≤-suc (suc-≤-suc zero-≤)
Fin≤1→isProp : (n : ℕ) → n ≤ 1 → isProp (Fin n)
Fin≤1→isProp 0 _ = isPropFin0
Fin≤1→isProp 1 _ = isContr→isProp isContrFin1
Fin≤1→isProp (suc (suc n)) p = Empty.rec (¬-<-zero (pred-≤-pred p))
isProp→Fin≤1 : (n : ℕ) → isProp (Fin n) → n ≤ 1
isProp→Fin≤1 0 _ = ≤-solver 0 1
isProp→Fin≤1 1 _ = ≤-solver 1 1
isProp→Fin≤1 (suc (suc n)) p = Empty.rec (fzero≠fone (p fzero fone))
CharacΠFinIso : ∀ {ℓ} (n : ℕ) {B : Fin (suc n) → Type ℓ}
→ Iso ((x : _) → B x) (B fzero × ((x : _) → B (fsuc x)))
Iso.fun (CharacΠFinIso n {B = B}) f = f fzero , f ∘ fsuc
Iso.inv (CharacΠFinIso n {B = B}) (x , f) (zero , p) =
subst B (Fin-fst-≡ {i = fzero} {j = zero , p} refl) x
Iso.inv (CharacΠFinIso n {B = B}) (x , f) (suc y , p) =
subst B (Fin-fst-≡ refl) (f (y , pred-≤-pred p))
Iso.rightInv (CharacΠFinIso n {B = B}) (x , f) =
ΣPathP ((λ j →
transp (λ i → B (isSetFin fzero fzero (Fin-fst-≡ (λ _ → zero)) refl j i)) j x)
, funExt λ x → (λ j → subst B (pathid x j)
(f (fst x , pred-≤-pred (suc-≤-suc (snd x)))))
∙ (λ i → transp (λ j → B (path₃ x (i ∨ j))) i (f (path₂ x i))))
where
module _ (x : Fin n) where
path₁ : _
path₁ = Fin-fst-≡ {i = (fsuc (fst x , pred-≤-pred (snd (fsuc x))))}
{j = fsuc x} refl
path₂ : _
path₂ = Fin-fst-≡ refl
path₃ : _
path₃ = cong fsuc path₂
pathid : path₁ ≡ path₃
pathid = isSetFin _ _ _ _
Iso.leftInv (CharacΠFinIso n {B = B}) f =
funExt λ { (zero , p) j
→ transp (λ i → B (Fin-fst-≡ {i = fzero} {j = zero , p} refl (i ∨ j)))
j (f (Fin-fst-≡ {i = fzero} {j = zero , p} refl j))
; (suc x , p) j → transp (λ i → B (q x p (i ∨ j))) j (f (q x p j))}
where
q : (x : _) (p : _) → _
q x p = Fin-fst-≡ {i = (fsuc (x , pred-≤-pred p))} {j = suc x , p} refl
module _ (_+A_ : A → A → A) (0A : A)
(rUnit : (x : _) → x +A 0A ≡ x)
where
sumFinGen0 : (n : ℕ) (f : Fin n → A)
→ ((x : _) → f x ≡ 0A)
→ sumFinGen _+A_ 0A f
≡ 0A
sumFinGen0 zero f ind = refl
sumFinGen0 (suc n) f ind =
cong₂ _+A_
(ind flast)
(sumFinGen0 n (f ∘ injectSuc) (λ x → ind (injectSuc x))) ∙ rUnit 0A
module _ (comm : (x y : A) → x +A y ≡ y +A x) where
private
lUnitA : (x : _) → 0A +A x ≡ x
lUnitA x = comm _ _ ∙ rUnit x
sumFin-choose :
{n : ℕ} (f : Fin n → A)
→ (a : A) (x : Fin n)
→ (f x ≡ a)
→ ((x' : Fin n) → ¬ (x' ≡ x) → f x' ≡ 0A)
→ sumFinGen {n = n} _+A_ 0A f ≡ a
sumFin-choose {zero} f a x p t = Empty.rec (¬Fin0 x)
sumFin-choose {suc n} f a x p t with (n ≟ fst x)
... | lt x₁ =
Empty.rec (¬m<m {suc n} ((fst (snd x)) + fst x₁
, (sym (+-assoc (fst (snd x)) (fst x₁) (suc (suc n)))
∙ (cong (fst (snd x) +_ ) (+-suc (fst x₁) (suc n))))
∙ sym ((sym (snd x .snd))
∙ cong (fst (snd x) +_) (sym (cong suc (x₁ .snd))))))
... | eq x₁ =
cong (f flast +A_) (sumFinGen0 n _
λ h → t _ λ q → ¬m<m (subst (_< n) (cong fst q ∙ sym x₁) (snd h)))
∙ rUnit _ ∙ sym (cong f x=flast) ∙ p
where
x=flast : x ≡ flast
x=flast = Σ≡Prop (λ _ → isProp≤) (sym x₁)
... | gt x₁ =
cong₂ _+A_
(t flast (λ p → ¬m<m (subst (_< n) (sym (cong fst p)) x₁)))
refl
∙ lUnitA _
∙ sumFin-choose {n = n} (f ∘ injectSuc) a (fst x , x₁)
(cong f (Σ≡Prop (λ _ → isProp≤) refl) ∙ p)
λ a r → t (injectSuc a) λ d → r (Σ≡Prop (λ _ → isProp≤)
(cong fst d))
module _ (assocA : (x y z : A) → x +A (y +A z) ≡ (x +A y) +A z) where
sumFinGenHom : (n : ℕ) (f g : Fin n → A)
→ sumFinGen _+A_ 0A (λ x → f x +A g x)
≡ (sumFinGen _+A_ 0A f +A sumFinGen _+A_ 0A g)
sumFinGenHom zero f g = sym (rUnit 0A)
sumFinGenHom (suc n) f g =
cong ((f flast +A g flast) +A_) (sumFinGenHom n (f ∘ injectSuc) (g ∘ injectSuc))
∙ move4 (f flast) (g flast)
(sumFinGen _+A_ 0A (λ x → f (injectSuc x)))
(sumFinGen _+A_ 0A (λ x → g (injectSuc x)))
_+A_ assocA comm
sumFinGenId : {n : ℕ} (_+_ : A → A → A) (0A : A)
(f g : Fin n → A) → f ≡ g → sumFinGen _+_ 0A f ≡ sumFinGen _+_ 0A g
sumFinGenId _+_ 0A f g p i = sumFinGen _+_ 0A (p i)