------------------------------------------------------------------------
-- The Agda standard library
--
-- All library modules, along with short descriptions
------------------------------------------------------------------------
-- Note that core modules are not included.
module Everything where
-- Definitions of algebraic structures like monoids and rings
-- (packed in records together with sets, operations, etc.)
import Algebra
-- The max operator derived from an arbitrary total order
import Algebra.Construct.NaturalChoice.Max
-- The min operator derived from an arbitrary total order
import Algebra.Construct.NaturalChoice.Min
-- Properties of functions, such as associativity and commutativity
import Algebra.FunctionProperties
-- Relations between properties of functions, such as associativity and
-- commutativity
import Algebra.FunctionProperties.Consequences
-- Relations between properties of functions, such as associativity and
-- commutativity (specialised to propositional equality)
import Algebra.FunctionProperties.Consequences.Propositional
-- Morphisms between algebraic structures
import Algebra.Morphism
-- Some defined operations (multiplication by natural number and
-- exponentiation)
import Algebra.Operations.CommutativeMonoid
-- Some defined operations (multiplication by natural number and
-- exponentiation)
import Algebra.Operations.Semiring
-- Some derivable properties
import Algebra.Properties.AbelianGroup
-- Some derivable properties
import Algebra.Properties.BooleanAlgebra
-- Boolean algebra expressions
import Algebra.Properties.BooleanAlgebra.Expression
-- Some derivable properties
import Algebra.Properties.CommutativeMonoid
-- Some derivable properties
import Algebra.Properties.DistributiveLattice
-- Some derivable properties
import Algebra.Properties.Group
-- Some derivable properties
import Algebra.Properties.Lattice
-- Some derivable properties
import Algebra.Properties.Ring
-- Some derivable properties
import Algebra.Properties.Semilattice
-- Solver for equations in commutative monoids
import Algebra.Solver.CommutativeMonoid
-- An example of how Algebra.CommutativeMonoidSolver can be used
import Algebra.Solver.CommutativeMonoid.Example
-- Solver for equations in commutative monoids
import Algebra.Solver.IdempotentCommutativeMonoid
-- An example of how Algebra.IdempotentCommutativeMonoidSolver can be
-- used
import Algebra.Solver.IdempotentCommutativeMonoid.Example
-- Solver for monoid equalities
import Algebra.Solver.Monoid
-- Solver for commutative ring or semiring equalities
import Algebra.Solver.Ring
-- Commutative semirings with some additional structure ("almost"
-- commutative rings), used by the ring solver
import Algebra.Solver.Ring.AlmostCommutativeRing
-- Some boring lemmas used by the ring solver
import Algebra.Solver.Ring.Lemmas
-- Instantiates the ring solver, using the natural numbers as the
-- coefficient "ring"
import Algebra.Solver.Ring.NaturalCoefficients
-- Instantiates the natural coefficients ring solver, using coefficient
-- equality induced by ℕ.
import Algebra.Solver.Ring.NaturalCoefficients.Default
-- Instantiates the ring solver with two copies of the same ring with
-- decidable equality
import Algebra.Solver.Ring.Simple
-- Some algebraic structures (not packed up with sets, operations,
-- etc.)
import Algebra.Structures
-- Results concerning double negation elimination.
import Axiom.DoubleNegationElimination
-- Results concerning the excluded middle axiom.
import Axiom.ExcludedMiddle
-- Results concerning function extensionality for propositional equality
import Axiom.Extensionality.Heterogeneous
-- Results concerning function extensionality for propositional equality
import Axiom.Extensionality.Propositional
-- Results concerning uniqueness of identity proofs
import Axiom.UniquenessOfIdentityProofs
-- Results concerning uniqueness of identity proofs, with axiom K
import Axiom.UniquenessOfIdentityProofs.WithK
-- Applicative functors
import Category.Applicative
-- Indexed applicative functors
import Category.Applicative.Indexed
-- Applicative functors on indexed sets (predicates)
import Category.Applicative.Predicate
-- Comonads
import Category.Comonad
-- Functors
import Category.Functor
-- Functors on indexed sets (predicates)
import Category.Functor.Predicate
-- Monads
import Category.Monad
-- A delimited continuation monad
import Category.Monad.Continuation
-- Indexed monads
import Category.Monad.Indexed
-- The partiality monad
import Category.Monad.Partiality
-- An All predicate for the partiality monad
import Category.Monad.Partiality.All
-- Monads on indexed sets (predicates)
import Category.Monad.Predicate
-- The state monad
import Category.Monad.State
-- "Finite" sets indexed on coinductive "natural" numbers
import Codata.Cofin
-- Conat Literals
import Codata.Cofin.Literals
-- The Colist type and some operations
import Codata.Colist
-- Bisimilarity for Colists
import Codata.Colist.Bisimilarity
-- A categorical view of Colist
import Codata.Colist.Categorical
-- Properties of operations on the Colist type
import Codata.Colist.Properties
-- The Conat type and some operations
import Codata.Conat
-- Bisimilarity for Conats
import Codata.Conat.Bisimilarity
-- Conat Literals
import Codata.Conat.Literals
-- Properties for Conats
import Codata.Conat.Properties
-- The Covec type and some operations
import Codata.Covec
-- Bisimilarity for Covecs
import Codata.Covec.Bisimilarity
-- A categorical view of Covec
import Codata.Covec.Categorical
-- Properties of operations on the Covec type
import Codata.Covec.Properties
-- The Cowriter type and some operations
import Codata.Cowriter
-- The Delay type and some operations
import Codata.Delay
-- Bisimilarity for the Delay type
import Codata.Delay.Bisimilarity
-- A categorical view of Delay
import Codata.Delay.Categorical
-- Properties of operations on the Delay type
import Codata.Delay.Properties
-- M-types (the dual of W-types)
import Codata.M
-- Bisimilarity for M-types
import Codata.M.Bisimilarity
-- Properties of operations on M-types
import Codata.M.Properties
-- "Finite" sets indexed on coinductive "natural" numbers
import Codata.Musical.Cofin
-- Coinductive lists
import Codata.Musical.Colist
-- Infinite merge operation for coinductive lists
import Codata.Musical.Colist.Infinite-merge
-- Coinductive "natural" numbers
import Codata.Musical.Conat
-- Costrings
import Codata.Musical.Costring
-- Coinductive vectors
import Codata.Musical.Covec
-- M-types (the dual of W-types)
import Codata.Musical.M
-- Indexed M-types (the dual of indexed W-types aka Petersson-Synek
-- trees).
import Codata.Musical.M.Indexed
-- Basic types related to coinduction
import Codata.Musical.Notation
-- Streams
import Codata.Musical.Stream
-- The Stream type and some operations
import Codata.Stream
-- Bisimilarity for Streams
import Codata.Stream.Bisimilarity
-- A categorical view of Stream
import Codata.Stream.Categorical
-- Properties of operations on the Stream type
import Codata.Stream.Properties
-- The Thunk wrappers for sized codata, copredicates and corelations
import Codata.Thunk
-- AVL trees
import Data.AVL
-- Types and functions which are used to keep track of height
-- invariants in AVL Trees
import Data.AVL.Height
-- Indexed AVL trees
import Data.AVL.Indexed
-- Some code related to indexed AVL trees that relies on the K rule
import Data.AVL.Indexed.WithK
-- Finite maps with indexed keys and values, based on AVL trees
import Data.AVL.IndexedMap
-- Keys for AVL trees -- the original key type extended with a new
-- minimum and maximum.
import Data.AVL.Key
-- Finite sets, based on AVL trees
import Data.AVL.Sets
-- Values for AVL trees
-- Values must respect the underlying equivalence on keys
import Data.AVL.Value
-- A binary representation of natural numbers
import Data.Bin
-- Properties of the binary representation of natural numbers
import Data.Bin.Properties
-- Booleans
import Data.Bool
-- The type for booleans and some operations
import Data.Bool.Base
-- A bunch of properties
import Data.Bool.Properties
-- Showing booleans
import Data.Bool.Show
-- Automatic solvers for equations over booleans
import Data.Bool.Solver
-- Bounded vectors
import Data.BoundedVec
-- Bounded vectors (inefficient, concrete implementation)
import Data.BoundedVec.Inefficient
-- Characters
import Data.Char
-- Basic definitions for Characters
import Data.Char.Base
-- Properties of operations on characters
import Data.Char.Properties
-- Containers, based on the work of Abbott and others
import Data.Container
-- This module is DEPRECATED. Please use
-- Data.Container.Relation.Unary.Any directly.
import Data.Container.Any
-- Container combinators
import Data.Container.Combinator
-- Correctness proofs for container combinators
import Data.Container.Combinator.Properties
-- The free monad construction on containers
import Data.Container.FreeMonad
-- Indexed containers aka interaction structures aka polynomial
-- functors. The notation and presentation here is closest to that of
-- Hancock and Hyvernat in "Programming interfaces and basic topology"
-- (2006/9).
import Data.Container.Indexed
-- Indexed container combinators
import Data.Container.Indexed.Combinator
-- The free monad construction on indexed containers
import Data.Container.Indexed.FreeMonad
-- Some code related to indexed containers that uses heterogeneous
-- equality
import Data.Container.Indexed.WithK
-- Membership for containers
import Data.Container.Membership
-- Container Morphisms
import Data.Container.Morphism
-- Propertiers of any for containers
import Data.Container.Morphism.Properties
-- Properties of operations on containers
import Data.Container.Properties
-- Several kinds of "relatedness" for containers such as equivalences,
-- surjections and bijections
import Data.Container.Related
-- Equality over container extensions parametrised by some setoid
import Data.Container.Relation.Binary.Equality.Setoid
-- Pointwise equality for containers
import Data.Container.Relation.Binary.Pointwise
-- Properties of pointwise equality for containers
import Data.Container.Relation.Binary.Pointwise.Properties
-- All (□) for containers
import Data.Container.Relation.Unary.All
-- Any (◇) for containers
import Data.Container.Relation.Unary.Any
-- Propertiers of any for containers
import Data.Container.Relation.Unary.Any.Properties
-- Lists with fast append
import Data.DifferenceList
-- Natural numbers with fast addition (for use together with
-- DifferenceVec)
import Data.DifferenceNat
-- Vectors with fast append
import Data.DifferenceVec
-- Digits and digit expansions
import Data.Digit
-- Empty type
import Data.Empty
-- An irrelevant version of ⊥-elim
import Data.Empty.Irrelevant
-- Finite sets
import Data.Fin
-- Finite sets
import Data.Fin.Base
-- Decision procedures for finite sets and subsets of finite sets
import Data.Fin.Dec
-- Fin Literals
import Data.Fin.Literals
-- Bijections on finite sets (i.e. permutations).
import Data.Fin.Permutation
-- Component functions of permutations found in `Data.Fin.Permutation`
import Data.Fin.Permutation.Components
-- Properties related to Fin, and operations making use of these
-- properties (or other properties not available in Data.Fin)
import Data.Fin.Properties
-- Subsets of finite sets
import Data.Fin.Subset
-- Some properties about subsets
import Data.Fin.Subset.Properties
-- Substitutions
import Data.Fin.Substitution
-- An example of how Data.Fin.Substitution can be used: a definition
-- of substitution for the untyped λ-calculus, along with some lemmas
import Data.Fin.Substitution.Example
-- Substitution lemmas
import Data.Fin.Substitution.Lemmas
-- Application of substitutions to lists, along with various lemmas
import Data.Fin.Substitution.List
-- Floats
import Data.Float
-- Unsafe Float operations
import Data.Float.Unsafe
-- Directed acyclic multigraphs
import Data.Graph.Acyclic
-- Integers
import Data.Integer
-- Integers, basic types and operations
import Data.Integer.Base
-- Coprimality
import Data.Integer.Coprimality
-- Integer division
import Data.Integer.DivMod
-- Unsigned divisibility
import Data.Integer.Divisibility
-- Alternative definition of divisibility without using modulus.
import Data.Integer.Divisibility.Signed
-- Integer Literals
import Data.Integer.Literals
-- Some properties about integers
import Data.Integer.Properties
-- Automatic solvers for equations over integers
import Data.Integer.Solver
-- Lists
import Data.List
-- This module is DEPRECATED. Please use Data.List.Relation.Unary.All
-- directly.
import Data.List.All
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Unary.Any.Properties directly.
import Data.List.All.Properties
-- This module is DEPRECATED. Please use Data.List.Relation.Unary.Any
-- directly.
import Data.List.Any
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Unary.Any.Properties directly.
import Data.List.Any.Properties
-- Lists, basic types and operations
import Data.List.Base
-- A categorical view of List
import Data.List.Categorical
-- A data structure which keeps track of an upper bound on the number
-- of elements /not/ in a given list
import Data.List.Countdown
-- List Literals
import Data.List.Literals
-- Decidable propositional membership over lists
import Data.List.Membership.DecPropositional
-- Decidable setoid membership over lists
import Data.List.Membership.DecSetoid
-- Data.List.Any.Membership instantiated with propositional equality,
-- along with some additional definitions.
import Data.List.Membership.Propositional
-- Properties related to propositional list membership
import Data.List.Membership.Propositional.Properties
-- List membership and some related definitions
import Data.List.Membership.Setoid
-- Properties related to setoid list membership
import Data.List.Membership.Setoid.Properties
-- Non-empty lists
import Data.List.NonEmpty
-- A categorical view of List⁺
import Data.List.NonEmpty.Categorical
-- Properties of non-empty lists
import Data.List.NonEmpty.Properties
-- List-related properties
import Data.List.Properties
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Unary.Any.Properties directly.
import Data.List.Relation.BagAndSetEquality
-- Bag and set equality
import Data.List.Relation.Binary.BagAndSetEquality
-- Decidable equality over lists using propositional equality
import Data.List.Relation.Binary.Equality.DecPropositional
-- Decidable equality over lists parameterised by some setoid
import Data.List.Relation.Binary.Equality.DecSetoid
-- Equality over lists using propositional equality
import Data.List.Relation.Binary.Equality.Propositional
-- Equality over lists parameterised by some setoid
import Data.List.Relation.Binary.Equality.Setoid
-- Lexicographic ordering of lists
import Data.List.Relation.Binary.Lex.NonStrict
-- Lexicographic ordering of lists
import Data.List.Relation.Binary.Lex.Strict
-- An inductive definition for the permutation relation
import Data.List.Relation.Binary.Permutation.Inductive
-- Properties of permutation
import Data.List.Relation.Binary.Permutation.Inductive.Properties
-- Pointwise lifting of relations to lists
import Data.List.Relation.Binary.Pointwise
-- An inductive definition of the heterogeneous prefix relation
import Data.List.Relation.Binary.Prefix.Heterogeneous
-- Properties of the heterogeneous prefix relation
import Data.List.Relation.Binary.Prefix.Heterogeneous.Properties
-- An inductive definition of the sublist relation for types which have
-- a decidable equality. This is commonly known as Order Preserving
-- Embeddings (OPE).
import Data.List.Relation.Binary.Sublist.DecPropositional
-- A solver for proving that one list is a sublist of the other for types
-- which enjoy decidable equalities.
import Data.List.Relation.Binary.Sublist.DecPropositional.Solver
-- An inductive definition of the sublist relation with respect to a
-- setoid which is decidable. This is a generalisation of what is
-- commonly known as Order Preserving Embeddings (OPE).
import Data.List.Relation.Binary.Sublist.DecSetoid
-- A solver for proving that one list is a sublist of the other.
import Data.List.Relation.Binary.Sublist.DecSetoid.Solver
-- An inductive definition of the heterogeneous sublist relation
-- This is a generalisation of what is commonly known as Order
-- Preserving Embeddings (OPE).
import Data.List.Relation.Binary.Sublist.Heterogeneous
-- Properties of the heterogeneous sublist relation
import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties
-- A solver for proving that one list is a sublist of the other.
import Data.List.Relation.Binary.Sublist.Heterogeneous.Solver
-- An inductive definition of the sublist relation. This is commonly
-- known as Order Preserving Embeddings (OPE).
import Data.List.Relation.Binary.Sublist.Propositional
-- Sublist-related properties
import Data.List.Relation.Binary.Sublist.Propositional.Properties
-- An inductive definition of the sublist relation with respect to a
-- setoid. This is a generalisation of what is commonly known as Order
-- Preserving Embeddings (OPE).
import Data.List.Relation.Binary.Sublist.Setoid
-- Properties of the setoid sublist relation
import Data.List.Relation.Binary.Sublist.Setoid.Properties
-- The sublist relation over propositional equality.
import Data.List.Relation.Binary.Subset.Propositional
-- Properties of the sublist relation over setoid equality.
import Data.List.Relation.Binary.Subset.Propositional.Properties
-- The extensional sublist relation over setoid equality.
import Data.List.Relation.Binary.Subset.Setoid
-- Properties of the extensional sublist relation over setoid equality.
import Data.List.Relation.Binary.Subset.Setoid.Properties
-- An inductive definition of the heterogeneous suffix relation
import Data.List.Relation.Binary.Suffix.Heterogeneous
-- Properties of the heterogeneous suffix relation
import Data.List.Relation.Binary.Suffix.Heterogeneous.Properties
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Equality.DecPropositional directly.
import Data.List.Relation.Equality.DecPropositional
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Equality.DecSetoid directly.
import Data.List.Relation.Equality.DecSetoid
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Equality.Propositional directly.
import Data.List.Relation.Equality.Propositional
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Equality.Setoid directly.
import Data.List.Relation.Equality.Setoid
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Lex.NonStrict directly.
import Data.List.Relation.Lex.NonStrict
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Lex.Strict directly.
import Data.List.Relation.Lex.Strict
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Permutation.Inductive directly.
import Data.List.Relation.Permutation.Inductive
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Permutation.Inductive.Properties directly.
import Data.List.Relation.Permutation.Inductive.Properties
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Pointwise directly.
import Data.List.Relation.Pointwise
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Sublist.Propositional directly.
import Data.List.Relation.Sublist.Propositional
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Sublist.Propositional.Properties directly.
import Data.List.Relation.Sublist.Propositional.Properties
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Subset.Propositional directly.
import Data.List.Relation.Subset.Propositional
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Subset.Propositional.Properties directly.
import Data.List.Relation.Subset.Propositional.Properties
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Subset.Setoid directly.
import Data.List.Relation.Subset.Setoid
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Subset.Setoid.Properties directly.
import Data.List.Relation.Subset.Setoid.Properties
-- Generalised notion of interleaving two lists into one in an
-- order-preserving manner
import Data.List.Relation.Ternary.Interleaving
-- Properties of general interleavings
import Data.List.Relation.Ternary.Interleaving.Properties
-- Interleavings of lists using propositional equality
import Data.List.Relation.Ternary.Interleaving.Propositional
-- Properties of interleaving using propositional equality
import Data.List.Relation.Ternary.Interleaving.Propositional.Properties
-- Interleavings of lists using setoid equality
import Data.List.Relation.Ternary.Interleaving.Setoid
-- Properties of interleaving using setoid equality
import Data.List.Relation.Ternary.Interleaving.Setoid.Properties
-- Lists where all elements satisfy a given property
import Data.List.Relation.Unary.All
-- Properties related to All
import Data.List.Relation.Unary.All.Properties
-- Lists where at least one element satisfies a given property
import Data.List.Relation.Unary.Any
-- Properties related to Any
import Data.List.Relation.Unary.Any.Properties
-- First generalizes the idea that an element is the first in a list to
-- satisfy a predicate.
import Data.List.Relation.Unary.First
-- Properties of First
import Data.List.Relation.Unary.First.Properties
-- Reverse view
import Data.List.Reverse
-- Automatic solvers for equations over lists
import Data.List.Solver
-- List Zippers, basic types and operations
import Data.List.Zipper
-- List Zipper-related properties
import Data.List.Zipper.Properties
-- The Maybe type
import Data.Maybe
-- The Maybe type and some operations
import Data.Maybe.Base
-- A categorical view of Maybe
import Data.Maybe.Categorical
-- Maybe-related properties
import Data.Maybe.Properties
-- Pointwise lifting of relations to maybes
import Data.Maybe.Relation.Binary.Pointwise
-- Maybes where all the elements satisfy a given property
import Data.Maybe.Relation.Unary.All
-- Properties related to All
import Data.Maybe.Relation.Unary.All.Properties
-- Maybes where one of the elements satisfies a given property
import Data.Maybe.Relation.Unary.Any
-- Natural numbers
import Data.Nat
-- Natural numbers, basic types and operations
import Data.Nat.Base
-- Coprimality
import Data.Nat.Coprimality
-- Natural number division
import Data.Nat.DivMod
-- More efficient mod and divMod operations (require the K axiom)
import Data.Nat.DivMod.WithK
-- Divisibility
import Data.Nat.Divisibility
-- Greatest common divisor
import Data.Nat.GCD
-- Boring lemmas used in Data.Nat.GCD and Data.Nat.Coprimality
import Data.Nat.GCD.Lemmas
-- A generalisation of the arithmetic operations
import Data.Nat.GeneralisedArithmetic
-- Definition of and lemmas related to "true infinitely often"
import Data.Nat.InfinitelyOften
-- Least common multiple
import Data.Nat.LCM
-- Natural Literals
import Data.Nat.Literals
-- Primality
import Data.Nat.Primality
-- A bunch of properties about natural number operations
import Data.Nat.Properties
-- Showing natural numbers
import Data.Nat.Show
-- Automatic solvers for equations over naturals
import Data.Nat.Solver
-- Natural number types and operations requiring the axiom K.
import Data.Nat.WithK
-- Transitive closures
import Data.Plus
-- Products
import Data.Product
-- Universe-sensitive functor and monad instances for the Product type.
import Data.Product.Categorical.Examples
-- Left-biased universe-sensitive functor and monad instances for the
-- Product type.
import Data.Product.Categorical.Left
-- Base definitions for the left-biased universe-sensitive functor and
-- monad instances for the Product type.
import Data.Product.Categorical.Left.Base
-- Right-biased universe-sensitive functor and monad instances for the
-- Product type.
import Data.Product.Categorical.Right
-- Base definitions for the right-biased universe-sensitive functor
-- and monad instances for the Product type.
import Data.Product.Categorical.Right.Base
-- Dependent product combinators for propositional equality
-- preserving functions
import Data.Product.Function.Dependent.Propositional
-- Dependent product combinators for propositional equality
-- preserving functions
import Data.Product.Function.Dependent.Propositional.WithK
-- Dependent product combinators for setoid equality preserving
-- functions
import Data.Product.Function.Dependent.Setoid
-- Dependent product combinators for setoid equality preserving
-- functions
import Data.Product.Function.Dependent.Setoid.WithK
-- Non-dependent product combinators for propositional equality
-- preserving functions
import Data.Product.Function.NonDependent.Propositional
-- Non-dependent product combinators for setoid equality preserving
-- functions
import Data.Product.Function.NonDependent.Setoid
-- N-ary products
import Data.Product.N-ary
-- A categorical view of N-ary products
import Data.Product.N-ary.Categorical
-- Properties of n-ary products
import Data.Product.N-ary.Properties
-- Properties of products
import Data.Product.Properties
-- Properties, related to products, that rely on the K rule
import Data.Product.Properties.WithK
-- Lexicographic products of binary relations
import Data.Product.Relation.Binary.Lex.NonStrict
-- Lexicographic products of binary relations
import Data.Product.Relation.Binary.Lex.Strict
-- Pointwise lifting of binary relations to sigma types
import Data.Product.Relation.Binary.Pointwise.Dependent
-- Properties that are related to pointwise lifting of binary
-- relations to sigma types and make use of heterogeneous equality
import Data.Product.Relation.Binary.Pointwise.Dependent.WithK
-- Pointwise products of binary relations
import Data.Product.Relation.Binary.Pointwise.NonDependent
-- This module is DEPRECATED. Please use
-- Data.Product.Relation.Binary.Lex.NonStrict directly.
import Data.Product.Relation.Lex.NonStrict
-- This module is DEPRECATED. Please use
-- Data.Product.Relation.Binary.Lex.Strict directly.
import Data.Product.Relation.Lex.Strict
-- This module is DEPRECATED. Please use
-- Data.Product.Relation.Binary.Pointwise.Dependent directly.
import Data.Product.Relation.Pointwise.Dependent
-- This module is DEPRECATED. Please use
-- Data.Product.Relation.Binary.Pointwise.NonDependent directly.
import Data.Product.Relation.Pointwise.NonDependent
-- Rational numbers
import Data.Rational
-- Rational numbers
import Data.Rational.Base
-- Rational Literals
import Data.Rational.Literals
-- Properties of Rational numbers
import Data.Rational.Properties
-- Reflexive closures
import Data.ReflexiveClosure
-- Signs
import Data.Sign
-- Some properties about signs
import Data.Sign.Properties
-- The reflexive transitive closures of McBride, Norell and Jansson
import Data.Star
-- Bounded vectors (inefficient implementation)
import Data.Star.BoundedVec
-- Decorated star-lists
import Data.Star.Decoration
-- Environments (heterogeneous collections)
import Data.Star.Environment
-- Finite sets defined using the reflexive-transitive closure, Star
import Data.Star.Fin
-- Lists defined in terms of the reflexive-transitive closure, Star
import Data.Star.List
-- Natural numbers defined using the reflexive-transitive closure, Star
import Data.Star.Nat
-- Pointers into star-lists
import Data.Star.Pointer
-- Some properties related to Data.Star
import Data.Star.Properties
-- Vectors defined in terms of the reflexive-transitive closure, Star
import Data.Star.Vec
-- Strings
import Data.String
-- Strings: builtin type and basic operations
import Data.String.Base
-- String Literals
import Data.String.Literals
-- Properties of operations on strings
import Data.String.Properties
-- Unsafe String operations and proofs
import Data.String.Unsafe
-- Sums (disjoint unions)
import Data.Sum
-- Sums (disjoint unions)
import Data.Sum.Base
-- Usage examples of the categorical view of the Sum type
import Data.Sum.Categorical.Examples
-- A Categorical view of the Sum type (Left-biased)
import Data.Sum.Categorical.Left
-- A Categorical view of the Sum type (Right-biased)
import Data.Sum.Categorical.Right
-- Sum combinators for propositional equality preserving functions
import Data.Sum.Function.Propositional
-- Sum combinators for setoid equality preserving functions
import Data.Sum.Function.Setoid
-- Properties of sums (disjoint unions)
import Data.Sum.Properties
-- Sums of binary relations
import Data.Sum.Relation.Binary.LeftOrder
-- Pointwise sum
import Data.Sum.Relation.Binary.Pointwise
-- This module is DEPRECATED. Please use
-- Data.Sum.Relation.Binary.LeftOrder directly.
import Data.Sum.Relation.LeftOrder
-- This module is DEPRECATED. Please use
-- Data.Sum.Relation.Binary.Pointwise directly.
import Data.Sum.Relation.Pointwise
-- Fixed-size tables of values, implemented as functions from 'Fin n'.
-- Similar to 'Data.Vec', but focusing on ease of retrieval instead of
-- ease of adding and removing elements.
import Data.Table
-- Tables, basic types and operations
import Data.Table.Base
-- Table-related properties
import Data.Table.Properties
-- Pointwise table equality
import Data.Table.Relation.Binary.Equality
-- This module is DEPRECATED. Please use
-- Data.Table.Relation.Binary.Equality directly.
import Data.Table.Relation.Equality
-- An either-or-both data type
import Data.These
-- Left-biased universe-sensitive functor and monad instances for These.
import Data.These.Categorical.Left
-- Base definitions for the left-biased universe-sensitive functor and
-- monad instances for These.
import Data.These.Categorical.Left.Base
-- Right-biased universe-sensitive functor and monad instances for These.
import Data.These.Categorical.Right
-- Base definitions for the right-biased universe-sensitive functor and
-- monad instances for These.
import Data.These.Categorical.Right.Base
-- Properties of These
import Data.These.Properties
-- Some unit types
import Data.Unit
-- The unit type and the total relation on unit
import Data.Unit.Base
-- Some unit types
import Data.Unit.NonEta
-- Vectors
import Data.Vec
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Unary.All directly.
import Data.Vec.All
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Unary.All.Properties directly.
import Data.Vec.All.Properties
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Unary.Any directly.
import Data.Vec.Any
-- A categorical view of Vec
import Data.Vec.Categorical
-- Decidable propositional membership over vectors
import Data.Vec.Membership.DecPropositional
-- Decidable setoid membership over vectors.
import Data.Vec.Membership.DecSetoid
-- Data.Vec.Any.Membership instantiated with propositional equality,
-- along with some additional definitions.
import Data.Vec.Membership.Propositional
-- Properties of membership of vectors based on propositional equality.
import Data.Vec.Membership.Propositional.Properties
-- Membership of vectors, along with some additional definitions.
import Data.Vec.Membership.Setoid
-- Code for converting Vec A n → B to and from n-ary functions
import Data.Vec.N-ary
-- Some Vec-related properties
import Data.Vec.Properties
-- Some Vec-related properties that depend on the K rule or make use
-- of heterogeneous equality
import Data.Vec.Properties.WithK
-- Decidable vector equality over propositional equality
import Data.Vec.Relation.Binary.Equality.DecPropositional
-- Decidable semi-heterogeneous vector equality over setoids
import Data.Vec.Relation.Binary.Equality.DecSetoid
-- Vector equality over propositional equality
import Data.Vec.Relation.Binary.Equality.Propositional
-- Code related to vector equality over propositional equality that
-- makes use of heterogeneous equality
import Data.Vec.Relation.Binary.Equality.Propositional.WithK
-- Semi-heterogeneous vector equality over setoids
import Data.Vec.Relation.Binary.Equality.Setoid
-- Extensional pointwise lifting of relations to vectors
import Data.Vec.Relation.Binary.Pointwise.Extensional
-- Inductive pointwise lifting of relations to vectors
import Data.Vec.Relation.Binary.Pointwise.Inductive
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Binary.Equality.DecPropositional directly.
import Data.Vec.Relation.Equality.DecPropositional
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Binary.Equality.DecSetoid directly.
import Data.Vec.Relation.Equality.DecSetoid
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Binary.Equality.Propositional directly.
import Data.Vec.Relation.Equality.Propositional
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Binary.Equality.Setoid directly.
import Data.Vec.Relation.Equality.Setoid
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Binary.Pointwise.Extensional directly.
import Data.Vec.Relation.Pointwise.Extensional
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Binary.Pointwise.Extensional directly.
import Data.Vec.Relation.Pointwise.Inductive
-- Vectors where all elements satisfy a given property
import Data.Vec.Relation.Unary.All
-- Properties related to All
import Data.Vec.Relation.Unary.All.Properties
-- Vectors where at least one element satisfies a given property
import Data.Vec.Relation.Unary.Any
-- Properties of vector's Any
import Data.Vec.Relation.Unary.Any.Properties
-- W-types
import Data.W
-- Indexed W-types aka Petersson-Synek trees
import Data.W.Indexed
-- Some code related to the W type that relies on the K rule
import Data.W.WithK
-- Machine words
import Data.Word
-- Unsafe machine word operations
import Data.Word.Unsafe
-- Printing Strings During Evaluation
import Debug.Trace
-- Type(s) used (only) when calling out to Haskell via the FFI
import Foreign.Haskell
-- Simple combinators working solely on and with functions
import Function
-- Bijections
import Function.Bijection
-- Endomorphisms on a Set
import Function.Endomorphism.Propositional
-- Endomorphisms on a Setoid
import Function.Endomorphism.Setoid
-- Function setoids and related constructions
import Function.Equality
-- Equivalence (coinhabitance)
import Function.Equivalence
-- Half adjoint equivalences
import Function.HalfAdjointEquivalence
-- A categorical view of the identity function
import Function.Identity.Categorical
-- Injections
import Function.Injection
-- Inverses
import Function.Inverse
-- Left inverses
import Function.LeftInverse
-- A module used for creating function pipelines, see
-- README.Function.Reasoning for examples
import Function.Reasoning
-- A universe which includes several kinds of "relatedness" for sets,
-- such as equivalences, surjections and bijections
import Function.Related
-- Basic lemmas showing that various types are related (isomorphic or
-- equivalent or…)
import Function.Related.TypeIsomorphisms
-- Automatic solver for equations over product and sum types
import Function.Related.TypeIsomorphisms.Solver
-- Surjections
import Function.Surjection
-- IO
import IO
-- Primitive IO: simple bindings to Haskell types and functions
import IO.Primitive
-- An abstraction of various forms of recursion/induction
import Induction
-- Lexicographic induction
import Induction.Lexicographic
-- Various forms of induction for natural numbers
import Induction.Nat
-- Well-founded induction
import Induction.WellFounded
-- Universe levels
import Level
-- Conversion from naturals to universe levels
import Level.Literals
-- Record types with manifest fields and "with", based on Randy
-- Pollack's "Dependently Typed Records in Type Theory"
import Record
-- Support for reflection
import Reflection
-- Properties of homogeneous binary relations
import Relation.Binary
-- Some properties imply others
import Relation.Binary.Consequences
-- A pointwise lifting of a relation to incorporate new extrema.
import Relation.Binary.Construct.Add.Extrema.Equality
-- The lifting of a non-strict order to incorporate new extrema
import Relation.Binary.Construct.Add.Extrema.NonStrict
-- The lifting of a strict order to incorporate new extrema
import Relation.Binary.Construct.Add.Extrema.Strict
-- A pointwise lifting of a relation to incorporate a new infimum.
import Relation.Binary.Construct.Add.Infimum.Equality
-- The lifting of a non-strict order to incorporate a new infimum
import Relation.Binary.Construct.Add.Infimum.NonStrict
-- The lifting of a non-strict order to incorporate a new infimum
import Relation.Binary.Construct.Add.Infimum.Strict
-- A pointwise lifting of a relation to incorporate an additional point.
import Relation.Binary.Construct.Add.Point.Equality
-- A pointwise lifting of a relation to incorporate a new supremum.
import Relation.Binary.Construct.Add.Supremum.Equality
-- The lifting of a non-strict order to incorporate a new supremum
import Relation.Binary.Construct.Add.Supremum.NonStrict
-- The lifting of a strict order to incorporate a new supremum
import Relation.Binary.Construct.Add.Supremum.Strict
-- The universal binary relation
import Relation.Binary.Construct.Always
-- The reflexive, symmetric and transitive closure of a binary
-- relation (aka the equivalence closure).
import Relation.Binary.Construct.Closure.Equivalence
-- Reflexive closures
import Relation.Binary.Construct.Closure.Reflexive
-- The reflexive transitive closures of McBride, Norell and Jansson
import Relation.Binary.Construct.Closure.ReflexiveTransitive
-- Some properties of reflexive transitive closures.
import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties
-- Properties, related to reflexive transitive closures, that rely on
-- the K rule
import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties.WithK
-- Symmetric closures of binary relations
import Relation.Binary.Construct.Closure.Symmetric
-- Transitive closures
import Relation.Binary.Construct.Closure.Transitive
-- Some code related to transitive closures that relies on the K rule
import Relation.Binary.Construct.Closure.Transitive.WithK
-- The binary relation defined by a constant
import Relation.Binary.Construct.Constant
-- Many properties which hold for `∼` also hold for `flip ∼`. Unlike
-- the module `Relation.Binary.Construct.Flip` this module does not
-- flip the underlying equality.
import Relation.Binary.Construct.Converse
-- Many properties which hold for `∼` also hold for `flip ∼`. Unlike
-- the module `Relation.Binary.Construct.Converse` this module flips
-- both the relation and the underlying equality.
import Relation.Binary.Construct.Flip
-- Every respectful unary relation induces a preorder. No claim is
-- made that this preorder is unique.
import Relation.Binary.Construct.FromPred
-- Every respectful binary relation induces a preorder. No claim is
-- made that this preorder is unique.
import Relation.Binary.Construct.FromRel
-- Intersection of two binary relations
import Relation.Binary.Construct.Intersection
-- Conversion of binary operators to binary relations via the left
-- natural order.
import Relation.Binary.Construct.NaturalOrder.Left
-- Conversion of binary operators to binary relations via the right
-- natural order.
import Relation.Binary.Construct.NaturalOrder.Right
-- The empty binary relation
import Relation.Binary.Construct.Never
-- Conversion of _≤_ to _<_
import Relation.Binary.Construct.NonStrictToStrict
-- Many properties which hold for _∼_ also hold for _∼_ on f
import Relation.Binary.Construct.On
-- Conversion of < to ≤, along with a number of properties
import Relation.Binary.Construct.StrictToNonStrict
-- Union of two binary relations
import Relation.Binary.Construct.Union
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Reasoning.Setoid module directly.
import Relation.Binary.EqReasoning
-- Equivalence closures of binary relations
import Relation.Binary.EquivalenceClosure
-- Heterogeneous equality
import Relation.Binary.HeterogeneousEquality
-- Quotients for Heterogeneous equality
import Relation.Binary.HeterogeneousEquality.Quotients
-- Example of a Quotient: ℤ as (ℕ × ℕ / ∼)
import Relation.Binary.HeterogeneousEquality.Quotients.Examples
-- Indexed binary relations
import Relation.Binary.Indexed.Heterogeneous
-- Instantiates indexed binary structures at an index to the equivalent
-- non-indexed structures.
import Relation.Binary.Indexed.Heterogeneous.Construct.At
-- Creates trivially indexed records from their non-indexed counterpart.
import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial
-- Homogeneously-indexed binary relations
import Relation.Binary.Indexed.Homogeneous
-- Order-theoretic lattices
import Relation.Binary.Lattice
-- Order morphisms
import Relation.Binary.OrderMorphism
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Reasoning.PartialOrder module directly.
import Relation.Binary.PartialOrderReasoning
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Reasoning.Preorder module directly.
import Relation.Binary.PreorderReasoning
-- Properties satisfied by bounded join semilattices
import Relation.Binary.Properties.BoundedJoinSemilattice
-- Properties satisfied by bounded lattice
import Relation.Binary.Properties.BoundedLattice
-- Properties satisfied by bounded meet semilattices
import Relation.Binary.Properties.BoundedMeetSemilattice
-- Properties satisfied by decidable total orders
import Relation.Binary.Properties.DecTotalOrder
-- Properties for distributive lattice
import Relation.Binary.Properties.DistributiveLattice
-- Properties satisfied by Heyting Algebra
import Relation.Binary.Properties.HeytingAlgebra
-- Properties satisfied by join semilattices
import Relation.Binary.Properties.JoinSemilattice
-- Properties satisfied by lattices
import Relation.Binary.Properties.Lattice
-- Properties satisfied by meet semilattices
import Relation.Binary.Properties.MeetSemilattice
-- Properties satisfied by posets
import Relation.Binary.Properties.Poset
-- Properties satisfied by preorders
import Relation.Binary.Properties.Preorder
-- Properties satisfied by strict partial orders
import Relation.Binary.Properties.StrictPartialOrder
-- Properties satisfied by strict partial orders
import Relation.Binary.Properties.StrictTotalOrder
-- Properties satisfied by total orders
import Relation.Binary.Properties.TotalOrder
-- Propositional (intensional) equality
import Relation.Binary.PropositionalEquality
-- An equality postulate which evaluates
import Relation.Binary.PropositionalEquality.TrustMe
-- Some code related to propositional equality that relies on the K
-- rule
import Relation.Binary.PropositionalEquality.WithK
-- The basic code for equational reasoning with two relations:
-- equality and some other ordering.
import Relation.Binary.Reasoning.Base.Double
-- The basic code for equational reasoning with a single relation
import Relation.Binary.Reasoning.Base.Single
-- The basic code for equational reasoning with three relations:
-- equality, strict ordering and non-strict ordering.
import Relation.Binary.Reasoning.Base.Triple
-- Convenient syntax for "equational reasoning" in multiple Setoids
import Relation.Binary.Reasoning.MultiSetoid
-- Convenient syntax for "equational reasoning" using a partial order
import Relation.Binary.Reasoning.PartialOrder
-- Convenient syntax for "equational reasoning" using a preorder
import Relation.Binary.Reasoning.Preorder
-- Convenient syntax for reasoning with a setoid
import Relation.Binary.Reasoning.Setoid
-- Convenient syntax for "equational reasoning" using a strict partial
-- order.
import Relation.Binary.Reasoning.StrictPartialOrder
-- Helpers intended to ease the development of "tactics" which use
-- proof by reflection
import Relation.Binary.Reflection
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Reasoning.MultiSetoid module directly.
import Relation.Binary.SetoidReasoning
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Reasoning.StrictPartialOrder module directly.
import Relation.Binary.StrictPartialOrderReasoning
-- Symmetric closures of binary relations
import Relation.Binary.SymmetricClosure
-- Operations on nullary relations (like negation and decidability)
import Relation.Nullary
-- Notation for freely adding extrema to any set
import Relation.Nullary.Construct.Add.Extrema
-- Notation for freely adding an infimum to any set
import Relation.Nullary.Construct.Add.Infimum
-- Notation for adding an additional point to any set
import Relation.Nullary.Construct.Add.Point
-- Notation for freely adding a supremum to any set
import Relation.Nullary.Construct.Add.Supremum
-- Operations on and properties of decidable relations
import Relation.Nullary.Decidable
-- Implications of nullary relations
import Relation.Nullary.Implication
-- Properties related to negation
import Relation.Nullary.Negation
-- Products of nullary relations
import Relation.Nullary.Product
-- Sums of nullary relations
import Relation.Nullary.Sum
-- A universe of proposition functors, along with some properties
import Relation.Nullary.Universe
-- Unary relations
import Relation.Unary
-- Closures of a unary relation with respect to a binary one.
import Relation.Unary.Closure.Base
-- Closure of a unary relation with respect to a preorder
import Relation.Unary.Closure.Preorder
-- Closures of a unary relation with respect to a strict partial order
import Relation.Unary.Closure.StrictPartialOrder
-- Indexed unary relations
import Relation.Unary.Indexed
-- Predicate transformers
import Relation.Unary.PredicateTransformer
-- Properties of constructions over unary relations
import Relation.Unary.Properties
-- Sizes for Agda's sized types
import Size
-- Strictness combinators
import Strict
-- Universes
import Universe