------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a preorder
------------------------------------------------------------------------
-- Example uses:
--
-- u∼y : u ∼ y
-- u∼y = begin
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ∼⟨ w∼y ⟩
-- y ≈⟨ z≈y ⟩
-- z ∎
--
-- u≈w : u ≈ w
-- u≈w = begin-equality
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ≡˘⟨ x≡w ⟩
-- x ∎
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Preorder
{p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
open Preorder P
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Relation.Binary.Reasoning.Base.Double isPreorder public
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.0
infixr 2 _≈⟨⟩_
_≈⟨⟩_ = _≡⟨⟩_
{-# WARNING_ON_USAGE _≈⟨⟩_
"Warning: _≈⟨⟩_ was deprecated in v1.0.
Please use _≡⟨⟩_ instead."
#-}