------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a strict partial
-- order.
------------------------------------------------------------------------
-- Example uses:
--
-- u≤x : u ≤ x
-- u≤x = begin
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w≤x ⟩
-- x ∎
--
-- u<x : u < x
-- u<x = begin-strict
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w≤x ⟩
-- x ∎
--
-- u<e : u < e
-- u<e = begin-strict
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w<x ⟩
-- x ≤⟨ x≤y ⟩
-- y <⟨ y<z ⟩
-- z ≡˘⟨ d≡z ⟩
-- d ≈˘⟨ e≈d ⟩
-- e ∎
--
-- u≈w : u ≈ w
-- u≈w = begin-equality
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ∎
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.StrictPartialOrder
{p₁ p₂ p₃} (S : StrictPartialOrder p₁ p₂ p₃) where
open StrictPartialOrder S
import Relation.Binary.Construct.StrictToNonStrict _≈_ _<_ as NonStrict
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Relation.Binary.Reasoning.Base.Triple
(NonStrict.isPreorder₂ isStrictPartialOrder)
trans
<-resp-≈
NonStrict.<⇒≤
(NonStrict.<-≤-trans trans <-respʳ-≈)
public