------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties imply others
------------------------------------------------------------------------

module Relation.Binary.Consequences where

open import Relation.Binary.Core
open import Relation.Nullary using (yes; no)
open import Relation.Unary using ()
open import Function using (_∘_; flip)
open import Data.Sum using (inj₁; inj₂)
open import Data.Product using (_,_)
open import Data.Empty using (⊥-elim)

------------------------------------------------------------------------
-- Substitutive properties

module _ {a  p} {A : Set a} {_∼_ : Rel A } (P : Rel A p) where

  subst⟶respˡ : Substitutive _∼_ p  P Respectsˡ _∼_
  subst⟶respˡ subst {y} x'∼x Px'y = subst (flip P y) x'∼x Px'y

  subst⟶respʳ : Substitutive _∼_ p  P Respectsʳ _∼_
  subst⟶respʳ subst {x} y'∼y Pxy' = subst (P x) y'∼y Pxy'

  subst⟶resp₂ : Substitutive _∼_ p  P Respects₂ _∼_
  subst⟶resp₂ subst = subst⟶respʳ subst , subst⟶respˡ subst

module _ {a  p} {A : Set a} { : Rel A } {P : A  Set p} where

  P-resp⟶¬P-resp : Symmetric   P Respects   ( P) Respects 
  P-resp⟶¬P-resp sym resp x∼y ¬Px Py = ¬Px (resp (sym x∼y) Py)

------------------------------------------------------------------------
-- Proofs for non-strict orders

module _ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_≤_ : Rel A ℓ₂} where

  total⟶refl : _≤_ Respects₂ _≈_  Symmetric _≈_ 
                 Total _≤_  _≈_  _≤_
  total⟶refl (respʳ , respˡ) sym total {x} {y} x≈y with total x y
  ... | inj₁ x∼y = x∼y
  ... | inj₂ y∼x = respʳ x≈y (respˡ (sym x≈y) y∼x)

  total+dec⟶dec : _≈_  _≤_  Antisymmetric _≈_ _≤_ 
                    Total _≤_  Decidable _≈_  Decidable _≤_
  total+dec⟶dec refl antisym total _≟_ x y with total x y
  ... | inj₁ x≤y = yes x≤y
  ... | inj₂ y≤x with x  y
  ...   | yes x≈y = yes (refl x≈y)
  ...   | no  x≉y = no  x≤y  x≉y (antisym x≤y y≤x))

------------------------------------------------------------------------
-- Proofs for strict orders

module _ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} where

  trans∧irr⟶asym : Reflexive _≈_  Transitive _<_ 
                     Irreflexive _≈_ _<_  Asymmetric _<_
  trans∧irr⟶asym refl trans irrefl x<y y<x =
    irrefl refl (trans x<y y<x)

  irr∧antisym⟶asym : Irreflexive _≈_ _<_  Antisymmetric _≈_ _<_ 
                       Asymmetric _<_
  irr∧antisym⟶asym irrefl antisym x<y y<x =
    irrefl (antisym x<y y<x) x<y

  asym⟶antisym : Asymmetric _<_  Antisymmetric _≈_ _<_
  asym⟶antisym asym x<y y<x = ⊥-elim (asym x<y y<x)

  asym⟶irr : _<_ Respects₂ _≈_  Symmetric _≈_ 
               Asymmetric _<_  Irreflexive _≈_ _<_
  asym⟶irr (respʳ , respˡ) sym asym {x} {y} x≈y x<y =
    asym x<y (respʳ (sym x≈y) (respˡ x≈y x<y))

  tri⟶asym : Trichotomous _≈_ _<_  Asymmetric _<_
  tri⟶asym tri {x} {y} x<y x>y with tri x y
  ... | tri< _   _ x≯y = x≯y x>y
  ... | tri≈ _   _ x≯y = x≯y x>y
  ... | tri> x≮y _ _   = x≮y x<y

  tri⟶irr : Trichotomous _≈_ _<_  Irreflexive _≈_ _<_
  tri⟶irr compare {x} {y} x≈y x<y with compare x y
  ... | tri< _   x≉y y≮x = x≉y x≈y
  ... | tri> x≮y x≉y y<x = x≉y x≈y
  ... | tri≈ x≮y _   y≮x = x≮y x<y

  tri⟶dec≈ : Trichotomous _≈_ _<_  Decidable _≈_
  tri⟶dec≈ compare x y with compare x y
  ... | tri< _ x≉y _ = no  x≉y
  ... | tri≈ _ x≈y _ = yes x≈y
  ... | tri> _ x≉y _ = no  x≉y

  tri⟶dec< : Trichotomous _≈_ _<_  Decidable _<_
  tri⟶dec< compare x y with compare x y
  ... | tri< x<y _ _ = yes x<y
  ... | tri≈ x≮y _ _ = no  x≮y
  ... | tri> x≮y _ _ = no  x≮y

  trans∧tri⟶respʳ≈ : Symmetric _≈_  Transitive _≈_ 
                       Transitive _<_  Trichotomous _≈_ _<_ 
                       _<_ Respectsʳ _≈_
  trans∧tri⟶respʳ≈ sym ≈-tr <-tr tri {x} {y} {z} y≈z x<y with tri x z
  ... | tri< x<z _ _ = x<z
  ... | tri≈ _ x≈z _ = ⊥-elim (tri⟶irr tri (≈-tr x≈z (sym y≈z)) x<y)
  ... | tri> _ _ z<x = ⊥-elim (tri⟶irr tri (sym y≈z) (<-tr z<x x<y))

  trans∧tri⟶respˡ≈ : Transitive _≈_ 
                       Transitive _<_  Trichotomous _≈_ _<_ 
                       _<_ Respectsˡ _≈_
  trans∧tri⟶respˡ≈ ≈-tr <-tr tri {z} {_} {y} x≈y x<z with tri y z
  ... | tri< y<z _ _ = y<z
  ... | tri≈ _ y≈z _ = ⊥-elim (tri⟶irr tri (≈-tr x≈y y≈z) x<z)
  ... | tri> _ _ z<y = ⊥-elim (tri⟶irr tri x≈y (<-tr x<z z<y))

  trans∧tri⟶resp≈ : Symmetric _≈_  Transitive _≈_ 
                      Transitive _<_  Trichotomous _≈_ _<_ 
                      _<_ Respects₂ _≈_
  trans∧tri⟶resp≈ sym ≈-tr <-tr tri =
    trans∧tri⟶respʳ≈ sym ≈-tr <-tr tri ,
    trans∧tri⟶respˡ≈ ≈-tr <-tr tri

------------------------------------------------------------------------
-- Other proofs

module _ {a b p q} {A : Set a} {B : Set b }
         {P : REL A B p} {Q : REL A B q}
         where

  map-NonEmpty : P  Q  NonEmpty P  NonEmpty Q
  map-NonEmpty f x = nonEmpty (f (NonEmpty.proof x))