------------------------------------------------------------------------
-- The Agda standard library
--
-- Bisimilarity for Colists
------------------------------------------------------------------------

module Codata.Colist.Bisimilarity where

open import Level using (_⊔_)
open import Size
open import Codata.Thunk
open import Codata.Colist
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)

data Bisim {a b r} {A : Set a} {B : Set b} (R : A  B  Set r) (i : Size) :
           (xs : Colist A ) (ys : Colist B )  Set (r  a  b) where
  []  : Bisim R i [] []
  _∷_ :  {x y xs ys}  R x y  Thunk^R (Bisim R) i xs ys  Bisim R i (x  xs) (y  ys)


module _ {a r} {A : Set a} {R : A  A  Set r} where

 reflexive : Reflexive R   {i}  Reflexive (Bisim R i)
 reflexive refl^R {i} {[]}     = []
 reflexive refl^R {i} {r  rs} = refl^R  λ where .force  reflexive refl^R

module _ {a b} {A : Set a} {B : Set b}
         {r} {P : A  B  Set r} {Q : B  A  Set r} where

 symmetric : Sym P Q   {i}  Sym (Bisim P i) (Bisim Q i)
 symmetric sym^PQ []       = []
 symmetric sym^PQ (p  ps) = sym^PQ p  λ where .force  symmetric sym^PQ (ps .force)

module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
         {r} {P : A  B  Set r} {Q : B  C  Set r} {R : A  C  Set r} where

 transitive : Trans P Q R   {i}  Trans (Bisim P i) (Bisim Q i) (Bisim R i)
 transitive trans^PQR []       []       = []
 transitive trans^PQR (p  ps) (q  qs) =
   trans^PQR p q  λ where .force  transitive trans^PQR (ps .force) (qs .force)

-- Pointwise Equality as a Bisimilarity
------------------------------------------------------------------------

module _ {} {A : Set } where

 infix 1 _⊢_≈_
 _⊢_≈_ :  i  Colist A   Colist A   Set 
 _⊢_≈_ = Bisim _≡_

 refl :  {i}  Reflexive (i ⊢_≈_)
 refl = reflexive Eq.refl

 sym :  {i}  Symmetric (i ⊢_≈_)
 sym = symmetric Eq.sym

 trans :  {i}  Transitive (i ⊢_≈_)
 trans = transitive Eq.trans