------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------

open import Algebra

module Algebra.Properties.BooleanAlgebra
         {b₁ b₂} (B : BooleanAlgebra b₁ b₂)
         where

open BooleanAlgebra B
import Algebra.Properties.DistributiveLattice
private
  open module DL = Algebra.Properties.DistributiveLattice
                     distributiveLattice public
    hiding (replace-equality)
open import Algebra.Structures _≈_
open import Algebra.FunctionProperties _≈_
open import Algebra.FunctionProperties.Consequences
  record {isEquivalence = isEquivalence}
open import Relation.Binary.EqReasoning setoid
open import Relation.Binary
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product

------------------------------------------------------------------------
-- Some simple generalisations

∨-complementˡ : LeftInverse  ¬_ _∨_
∨-complementˡ = comm+invʳ⇒invˡ ∨-comm ∨-complementʳ

∨-complement : Inverse  ¬_ _∨_
∨-complement = ∨-complementˡ , ∨-complementʳ

∧-complementˡ : LeftInverse  ¬_ _∧_
∧-complementˡ = comm+invʳ⇒invˡ ∧-comm ∧-complementʳ

∧-complement : Inverse  ¬_ _∧_
∧-complement = ∧-complementˡ , ∧-complementʳ

------------------------------------------------------------------------
-- The dual construction is also a boolean algebra

∧-∨-isBooleanAlgebra : IsBooleanAlgebra _∧_ _∨_ ¬_  
∧-∨-isBooleanAlgebra = record
  { isDistributiveLattice = ∧-∨-isDistributiveLattice
  ; ∨-complementʳ         = ∧-complementʳ
  ; ∧-complementʳ         = ∨-complementʳ
  ; ¬-cong                = ¬-cong
  }

∧-∨-booleanAlgebra : BooleanAlgebra _ _
∧-∨-booleanAlgebra = record
  { _∧_              = _∨_
  ; _∨_              = _∧_
  ;                 = 
  ;                 = 
  ; isBooleanAlgebra = ∧-∨-isBooleanAlgebra
  }

------------------------------------------------------------------------
-- (∨, ∧, ⊥, ⊤) and (∧, ∨, ⊤, ⊥) are commutative semirings

∧-identityʳ : RightIdentity  _∧_
∧-identityʳ x = begin
  x            ≈⟨ refl  ∧-cong  sym (∨-complementʳ _) 
  x  (x  ¬ x)  ≈⟨ proj₂ absorptive _ _ 
  x              

∧-identityˡ : LeftIdentity  _∧_
∧-identityˡ = comm+idʳ⇒idˡ ∧-comm ∧-identityʳ

∧-identity : Identity  _∧_
∧-identity = ∧-identityˡ , ∧-identityʳ

∨-identityʳ : RightIdentity  _∨_
∨-identityʳ x = begin
  x            ≈⟨ refl  ∨-cong  sym (∧-complementʳ _) 
  x  x  ¬ x    ≈⟨ proj₁ absorptive _ _ 
  x              

∨-identityˡ : LeftIdentity  _∨_
∨-identityˡ = comm+idʳ⇒idˡ ∨-comm ∨-identityʳ

∨-identity : Identity  _∨_
∨-identity = ∨-identityˡ , ∨-identityʳ

∧-zeroʳ : RightZero  _∧_
∧-zeroʳ x = begin
  x            ≈⟨ refl  ∧-cong  sym (∧-complementʳ _) 
  x   x   ¬ x  ≈⟨ sym $ ∧-assoc _ _ _ 
  (x  x)  ¬ x  ≈⟨ ∧-idempotent _  ∧-cong  refl 
  x        ¬ x  ≈⟨ ∧-complementʳ _ 
                

∧-zeroˡ : LeftZero  _∧_
∧-zeroˡ = comm+zeʳ⇒zeˡ ∧-comm ∧-zeroʳ

∧-zero : Zero  _∧_
∧-zero = ∧-zeroˡ , ∧-zeroʳ

∨-zeroʳ :  x  x    
∨-zeroʳ x = begin
  x            ≈⟨ refl  ∨-cong  sym (∨-complementʳ _) 
  x   x   ¬ x  ≈⟨ sym $ ∨-assoc _ _ _ 
  (x  x)  ¬ x  ≈⟨ ∨-idempotent _  ∨-cong  refl 
  x        ¬ x  ≈⟨ ∨-complementʳ _ 
                

∨-zeroˡ : LeftZero  _∨_
∨-zeroˡ _ = ∨-comm _ _  trans  ∨-zeroʳ _

∨-zero : Zero  _∨_
∨-zero = ∨-zeroˡ , ∨-zeroʳ

∨-isSemigroup : IsSemigroup _∨_
∨-isSemigroup = record
  { isEquivalence = isEquivalence
  ; assoc         = ∨-assoc
  ; ∙-cong        = ∨-cong
  }

∧-isSemigroup : IsSemigroup _∧_
∧-isSemigroup = record
  { isEquivalence = isEquivalence
  ; assoc         = ∧-assoc
  ; ∙-cong        = ∧-cong
  }

∨-⊥-isMonoid : IsMonoid _∨_ 
∨-⊥-isMonoid = record
  { isSemigroup = ∨-isSemigroup
  ; identity    = ∨-identity
  }

∧-⊤-isMonoid : IsMonoid _∧_ 
∧-⊤-isMonoid = record
  { isSemigroup = ∧-isSemigroup
  ; identity    = ∧-identity
  }

∨-⊥-isCommutativeMonoid : IsCommutativeMonoid _∨_ 
∨-⊥-isCommutativeMonoid = record
  { isSemigroup = ∨-isSemigroup
  ; identityˡ = ∨-identityˡ
  ; comm      = ∨-comm
  }

∧-⊤-isCommutativeMonoid : IsCommutativeMonoid _∧_ 
∧-⊤-isCommutativeMonoid = record
  { isSemigroup = ∧-isSemigroup
  ; identityˡ = ∧-identityˡ
  ; comm      = ∧-comm
  }

∨-∧-isCommutativeSemiring : IsCommutativeSemiring _∨_ _∧_  
∨-∧-isCommutativeSemiring = record
  { +-isCommutativeMonoid = ∨-⊥-isCommutativeMonoid
  ; *-isCommutativeMonoid = ∧-⊤-isCommutativeMonoid
  ; distribʳ = proj₂ ∧-∨-distrib
  ; zeroˡ    = ∧-zeroˡ
  }

∨-∧-commutativeSemiring : CommutativeSemiring _ _
∨-∧-commutativeSemiring = record
  { _+_                   = _∨_
  ; _*_                   = _∧_
  ; 0#                    = 
  ; 1#                    = 
  ; isCommutativeSemiring = ∨-∧-isCommutativeSemiring
  }

∧-∨-isCommutativeSemiring : IsCommutativeSemiring _∧_ _∨_  
∧-∨-isCommutativeSemiring = record
  { +-isCommutativeMonoid = ∧-⊤-isCommutativeMonoid
  ; *-isCommutativeMonoid = ∨-⊥-isCommutativeMonoid
  ; distribʳ = proj₂ ∨-∧-distrib
  ; zeroˡ    = ∨-zeroˡ
  }

∧-∨-commutativeSemiring : CommutativeSemiring _ _
∧-∨-commutativeSemiring = record
  { _+_                   = _∧_
  ; _*_                   = _∨_
  ; 0#                    = 
  ; 1#                    = 
  ; isCommutativeSemiring = ∧-∨-isCommutativeSemiring
  }

------------------------------------------------------------------------
-- Some other properties

-- I took the statement of this lemma (called Uniqueness of
-- Complements) from some course notes, "Boolean Algebra", written
-- by Gert Smolka.

private
  lemma :  x y  x  y    x  y    ¬ x  y
  lemma x y x∧y=⊥ x∨y=⊤ = begin
    ¬ x                ≈⟨ sym $ ∧-identityʳ _ 
    ¬ x              ≈⟨ refl  ∧-cong  sym x∨y=⊤ 
    ¬ x  (x  y)      ≈⟨ proj₁ ∧-∨-distrib _ _ _ 
    ¬ x  x  ¬ x  y  ≈⟨ ∧-complementˡ _  ∨-cong  refl 
      ¬ x  y        ≈⟨ sym x∧y=⊥  ∨-cong  refl 
    x  y  ¬ x  y    ≈⟨ sym $ proj₂ ∧-∨-distrib _ _ _ 
    (x  ¬ x)  y      ≈⟨ ∨-complementʳ _  ∧-cong  refl 
      y              ≈⟨ ∧-identityˡ _ 
    y                  

¬⊥=⊤ : ¬   
¬⊥=⊤ = lemma   (∧-identityʳ _) (∨-zeroʳ _)

¬⊤=⊥ : ¬   
¬⊤=⊥ = lemma   (∧-zeroʳ _) (∨-identityʳ _)

¬-involutive : Involutive ¬_
¬-involutive x = lemma (¬ x) x (∧-complementˡ _) (∨-complementˡ _)

deMorgan₁ :  x y  ¬ (x  y)  ¬ x  ¬ y
deMorgan₁ x y = lemma (x  y) (¬ x  ¬ y) lem₁ lem₂
  where
  lem₁ = begin
    (x  y)  (¬ x  ¬ y)          ≈⟨ proj₁ ∧-∨-distrib _ _ _ 
    (x  y)  ¬ x  (x  y)  ¬ y  ≈⟨ (∧-comm _ _  ∧-cong  refl)  ∨-cong  refl 
    (y  x)  ¬ x  (x  y)  ¬ y  ≈⟨ ∧-assoc _ _ _  ∨-cong  ∧-assoc _ _ _ 
    y  (x  ¬ x)  x  (y  ¬ y)  ≈⟨ (refl  ∧-cong  ∧-complementʳ _)  ∨-cong 
                                      (refl  ∧-cong  ∧-complementʳ _) 
    (y  )  (x  )              ≈⟨ ∧-zeroʳ _  ∨-cong  ∧-zeroʳ _ 
                                ≈⟨ ∨-identityʳ _ 
                                  

  lem₃ = begin
    (x  y)  ¬ x          ≈⟨ proj₂ ∨-∧-distrib _ _ _ 
    (x  ¬ x)  (y  ¬ x)  ≈⟨ ∨-complementʳ _  ∧-cong  refl 
      (y  ¬ x)          ≈⟨ ∧-identityˡ _ 
    y  ¬ x                ≈⟨ ∨-comm _ _ 
    ¬ x  y                

  lem₂ = begin
    (x  y)  (¬ x  ¬ y)  ≈⟨ sym $ ∨-assoc _ _ _ 
    ((x  y)  ¬ x)  ¬ y  ≈⟨ lem₃  ∨-cong  refl 
    (¬ x  y)  ¬ y        ≈⟨ ∨-assoc _ _ _ 
    ¬ x  (y  ¬ y)        ≈⟨ refl  ∨-cong  ∨-complementʳ _ 
    ¬ x                  ≈⟨ ∨-zeroʳ _ 
                          

deMorgan₂ :  x y  ¬ (x  y)  ¬ x  ¬ y
deMorgan₂ x y = begin
  ¬ (x  y)          ≈⟨ ¬-cong $ sym (¬-involutive _)  ∨-cong 
                                 sym (¬-involutive _) 
  ¬ (¬ ¬ x  ¬ ¬ y)  ≈⟨ ¬-cong $ sym $ deMorgan₁ _ _ 
  ¬ ¬ (¬ x  ¬ y)    ≈⟨ ¬-involutive _ 
  ¬ x  ¬ y          

-- One can replace the underlying equality with an equivalent one.

replace-equality :
  {_≈′_ : Rel Carrier b₂} 
  (∀ {x y}  x  y  (x ≈′ y))  BooleanAlgebra _ _
replace-equality {_≈′_} ≈⇔≈′ = record
  { _≈_              = _≈′_
  ; _∨_              = _∨_
  ; _∧_              = _∧_
  ; ¬_               = ¬_
  ;                 = 
  ;                 = 
  ; isBooleanAlgebra =  record
    { isDistributiveLattice = DistributiveLattice.isDistributiveLattice
                                (DL.replace-equality ≈⇔≈′)
    ; ∨-complementʳ         = λ x  to ⟨$⟩ ∨-complementʳ x
    ; ∧-complementʳ         = λ x  to ⟨$⟩ ∧-complementʳ x
    ; ¬-cong                = λ i≈j  to ⟨$⟩ ¬-cong (from ⟨$⟩ i≈j)
    }
  } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})

------------------------------------------------------------------------
-- (⊕, ∧, id, ⊥, ⊤) is a commutative ring

-- This construction is parameterised over the definition of xor.

module XorRing
  (xor : Op₂ Carrier)
  (⊕-def :  x y  xor x y  (x  y)  ¬ (x  y))
  where

  private
    infixl 6 _⊕_

    _⊕_ : Op₂ Carrier
    _⊕_ = xor

    helper :  {x y u v}  x  y  u  v  x  ¬ u  y  ¬ v
    helper x≈y u≈v = x≈y  ∧-cong  ¬-cong u≈v

  ⊕-cong : Congruent₂ _⊕_
  ⊕-cong {x} {y} {u} {v} x≈y u≈v = begin
    x  u                ≈⟨ ⊕-def _ _ 
    (x  u)  ¬ (x  u)  ≈⟨ helper (x≈y  ∨-cong  u≈v)
                                   (x≈y  ∧-cong  u≈v) 
    (y  v)  ¬ (y  v)  ≈⟨ sym $ ⊕-def _ _ 
    y  v                

  ⊕-comm : Commutative _⊕_
  ⊕-comm x y = begin
    x  y                ≈⟨ ⊕-def _ _ 
    (x  y)  ¬ (x  y)  ≈⟨ helper (∨-comm _ _) (∧-comm _ _) 
    (y  x)  ¬ (y  x)  ≈⟨ sym $ ⊕-def _ _ 
    y  x                

  ⊕-¬-distribˡ :  x y  ¬ (x  y)  ¬ x  y
  ⊕-¬-distribˡ x y = begin
    ¬ (x  y)                              ≈⟨ ¬-cong $ ⊕-def _ _ 
    ¬ ((x  y)  (¬ (x  y)))              ≈⟨ ¬-cong (∧-∨-distribʳ _ _ _) 
    ¬ ((x  ¬ (x  y))  (y  ¬ (x  y)))  ≈⟨ ¬-cong $
                                                refl  ∨-cong 
                                                  (refl  ∧-cong 
                                                     ¬-cong (∧-comm _ _)) 
    ¬ ((x  ¬ (x  y))  (y  ¬ (y  x)))  ≈⟨ ¬-cong $ lem _ _  ∨-cong  lem _ _ 
    ¬ ((x  ¬ y)  (y  ¬ x))              ≈⟨ deMorgan₂ _ _ 
    ¬ (x  ¬ y)  ¬ (y  ¬ x)              ≈⟨ deMorgan₁ _ _  ∧-cong  refl 
    (¬ x  (¬ ¬ y))  ¬ (y  ¬ x)          ≈⟨ helper (refl  ∨-cong  ¬-involutive _)
                                                     (∧-comm _ _) 
    (¬ x  y)  ¬ (¬ x  y)                ≈⟨ sym $ ⊕-def _ _ 
    ¬ x  y                                
    where
    lem :  x y  x  ¬ (x  y)  x  ¬ y
    lem x y = begin
      x  ¬ (x  y)          ≈⟨ refl  ∧-cong  deMorgan₁ _ _ 
      x  (¬ x  ¬ y)        ≈⟨ ∧-∨-distribˡ _ _ _ 
      (x  ¬ x)  (x  ¬ y)  ≈⟨ ∧-complementʳ _  ∨-cong  refl 
        (x  ¬ y)          ≈⟨ ∨-identityˡ _ 
      x  ¬ y                

  ⊕-¬-distribʳ :  x y  ¬ (x  y)  x  ¬ y
  ⊕-¬-distribʳ x y = begin
    ¬ (x  y)  ≈⟨ ¬-cong $ ⊕-comm _ _ 
    ¬ (y  x)  ≈⟨ ⊕-¬-distribˡ _ _ 
    ¬ y  x    ≈⟨ ⊕-comm _ _ 
    x  ¬ y    

  ⊕-annihilates-¬ :  x y  x  y  ¬ x  ¬ y
  ⊕-annihilates-¬ x y = begin
    x  y        ≈⟨ sym $ ¬-involutive _ 
    ¬ ¬ (x  y)  ≈⟨ ¬-cong $ ⊕-¬-distribˡ _ _ 
    ¬ (¬ x  y)  ≈⟨ ⊕-¬-distribʳ _ _ 
    ¬ x  ¬ y    

  ⊕-identityˡ : LeftIdentity  _⊕_
  ⊕-identityˡ x = begin
      x                ≈⟨ ⊕-def _ _ 
    (  x)  ¬ (  x)  ≈⟨ helper (∨-identityˡ _) (∧-zeroˡ _) 
    x  ¬               ≈⟨ refl  ∧-cong  ¬⊥=⊤ 
    x                  ≈⟨ ∧-identityʳ _ 
    x                    

  ⊕-identityʳ : RightIdentity  _⊕_
  ⊕-identityʳ _ = ⊕-comm _ _  trans  ⊕-identityˡ _

  ⊕-identity : Identity  _⊕_
  ⊕-identity = ⊕-identityˡ , ⊕-identityʳ

  ⊕-inverseˡ : LeftInverse  id _⊕_
  ⊕-inverseˡ x = begin
    x  x               ≈⟨ ⊕-def _ _ 
    (x  x)  ¬ (x  x) ≈⟨ helper (∨-idempotent _) (∧-idempotent _) 
    x  ¬ x             ≈⟨ ∧-complementʳ _ 
                       

  ⊕-inverseʳ : RightInverse  id _⊕_
  ⊕-inverseʳ _ = ⊕-comm _ _  trans  ⊕-inverseˡ _

  ⊕-inverse : Inverse  id _⊕_
  ⊕-inverse = ⊕-inverseˡ , ⊕-inverseʳ

  ∧-distribˡ-⊕ : _∧_ DistributesOverˡ _⊕_
  ∧-distribˡ-⊕ x y z = begin
    x  (y  z)                ≈⟨ refl  ∧-cong  ⊕-def _ _ 
    x  ((y  z)  ¬ (y  z))  ≈⟨ sym $ ∧-assoc _ _ _ 
    (x  (y  z))  ¬ (y  z)  ≈⟨ refl  ∧-cong  deMorgan₁ _ _ 
    (x  (y  z)) 
    (¬ y  ¬ z)                ≈⟨ sym $ ∨-identityˡ _ 
     
    ((x  (y  z)) 
    (¬ y  ¬ z))               ≈⟨ lem₃  ∨-cong  refl 
    ((x  (y  z))  ¬ x) 
    ((x  (y  z)) 
    (¬ y  ¬ z))               ≈⟨ sym $ ∧-∨-distribˡ _ _ _ 
    (x  (y  z)) 
    (¬ x  (¬ y  ¬ z))        ≈⟨  refl  ∧-cong 
                                  (refl  ∨-cong  sym (deMorgan₁ _ _)) 
    (x  (y  z)) 
    (¬ x  ¬ (y  z))          ≈⟨ refl  ∧-cong  sym (deMorgan₁ _ _) 
    (x  (y  z)) 
    ¬ (x  (y  z))            ≈⟨ helper refl lem₁ 
    (x  (y  z)) 
    ¬ ((x  y)  (x  z))      ≈⟨ ∧-∨-distribˡ _ _ _  ∧-cong 
                                      refl 
    ((x  y)  (x  z)) 
    ¬ ((x  y)  (x  z))      ≈⟨ sym $ ⊕-def _ _ 
    (x  y)  (x  z)          
      where
      lem₂ = begin
        x  (y  z)  ≈⟨ sym $ ∧-assoc _ _ _ 
        (x  y)  z  ≈⟨ ∧-comm _ _  ∧-cong  refl 
        (y  x)  z  ≈⟨ ∧-assoc _ _ _ 
        y  (x  z)  

      lem₁ = begin
        x  (y  z)        ≈⟨ sym (∧-idempotent _)  ∧-cong  refl 
        (x  x)  (y  z)  ≈⟨ ∧-assoc _ _ _ 
        x  (x  (y  z))  ≈⟨ refl  ∧-cong  lem₂ 
        x  (y  (x  z))  ≈⟨ sym $ ∧-assoc _ _ _ 
        (x  y)  (x  z)  

      lem₃ = begin
                              ≈⟨ sym $ ∧-zeroʳ _ 
        (y  z)              ≈⟨ refl  ∧-cong  sym (∧-complementʳ _) 
        (y  z)  (x  ¬ x)    ≈⟨ sym $ ∧-assoc _ _ _ 
        ((y  z)  x)  ¬ x    ≈⟨ ∧-comm _ _  ∧-cong  refl  
        (x  (y  z))  ¬ x    

  ∧-distribʳ-⊕ : _∧_ DistributesOverʳ _⊕_
  ∧-distribʳ-⊕ = comm+distrˡ⇒distrʳ ⊕-cong ∧-comm ∧-distribˡ-⊕

  ∧-distrib-⊕ : _∧_ DistributesOver _⊕_
  ∧-distrib-⊕ = ∧-distribˡ-⊕ , ∧-distribʳ-⊕

  private

    lemma₂ :  x y u v 
             (x  y)  (u  v) 
             ((x  u)  (y  u)) 
             ((x  v)  (y  v))
    lemma₂ x y u v = begin
        (x  y)  (u  v)              ≈⟨ ∨-∧-distribˡ _ _ _ 
        ((x  y)  u)  ((x  y)  v)  ≈⟨ ∨-∧-distribʳ _ _ _
                                             ∧-cong 
                                          ∨-∧-distribʳ _ _ _ 
        ((x  u)  (y  u)) 
        ((x  v)  (y  v))            

  ⊕-assoc : Associative _⊕_
  ⊕-assoc x y z = sym $ begin
    x  (y  z)                                ≈⟨ refl  ⊕-cong  ⊕-def _ _ 
    x  ((y  z)  ¬ (y  z))                  ≈⟨ ⊕-def _ _ 
      (x  ((y  z)  ¬ (y  z))) 
    ¬ (x  ((y  z)  ¬ (y  z)))              ≈⟨ lem₃  ∧-cong  lem₄ 
    (((x  y)  z)  ((x  ¬ y)  ¬ z)) 
    (((¬ x  ¬ y)  z)  ((¬ x  y)  ¬ z))    ≈⟨ ∧-assoc _ _ _ 
    ((x  y)  z) 
    (((x  ¬ y)  ¬ z) 
     (((¬ x  ¬ y)  z)  ((¬ x  y)  ¬ z)))  ≈⟨ refl  ∧-cong  lem₅ 
    ((x  y)  z) 
    (((¬ x  ¬ y)  z) 
     (((x  ¬ y)  ¬ z)  ((¬ x  y)  ¬ z)))  ≈⟨ sym $ ∧-assoc _ _ _ 
    (((x  y)  z)  ((¬ x  ¬ y)  z)) 
    (((x  ¬ y)  ¬ z)  ((¬ x  y)  ¬ z))    ≈⟨ lem₁  ∧-cong  lem₂ 
      (((x  y)  ¬ (x  y))  z) 
    ¬ (((x  y)  ¬ (x  y))  z)              ≈⟨ sym $ ⊕-def _ _ 
    ((x  y)  ¬ (x  y))  z                  ≈⟨ sym $ ⊕-def _ _  ⊕-cong  refl 
    (x  y)  z                                
    where
    lem₁ = begin
      ((x  y)  z)  ((¬ x  ¬ y)  z)  ≈⟨ sym $ ∨-∧-distribʳ _ _ _ 
      ((x  y)  (¬ x  ¬ y))  z        ≈⟨ (refl  ∧-cong  sym (deMorgan₁ _ _))
                                                   ∨-cong  refl 
      ((x  y)  ¬ (x  y))  z          

    lem₂' = begin
      (x  ¬ y)  (¬ x  y)              ≈⟨ sym $ ∧-identityˡ _  ∧-cong  ∧-identityʳ _ 
      (  (x  ¬ y))  ((¬ x  y)  )  ≈⟨ sym $
                                              (∨-complementˡ _  ∧-cong  ∨-comm _ _)
                                                 ∧-cong 
                                              (refl  ∧-cong  ∨-complementˡ _) 
      ((¬ x  x)  (¬ y  x)) 
      ((¬ x  y)  (¬ y  y))            ≈⟨ sym $ lemma₂ _ _ _ _ 
      (¬ x  ¬ y)  (x  y)              ≈⟨ sym $ deMorgan₂ _ _  ∨-cong  ¬-involutive _ 
      ¬ (x  y)  ¬ ¬ (x  y)            ≈⟨ sym (deMorgan₁ _ _) 
      ¬ ((x  y)  ¬ (x  y))            

    lem₂ = begin
      ((x  ¬ y)  ¬ z)  ((¬ x  y)  ¬ z)  ≈⟨ sym $ ∨-∧-distribʳ _ _ _ 
      ((x  ¬ y)  (¬ x  y))  ¬ z          ≈⟨ lem₂'  ∨-cong  refl 
      ¬ ((x  y)  ¬ (x  y))  ¬ z          ≈⟨ sym $ deMorgan₁ _ _ 
      ¬ (((x  y)  ¬ (x  y))  z)          

    lem₃ = begin
      x  ((y  z)  ¬ (y  z))          ≈⟨ refl  ∨-cong 
                                              (refl  ∧-cong  deMorgan₁ _ _) 
      x  ((y  z)  (¬ y  ¬ z))        ≈⟨ ∨-∧-distribˡ _ _ _ 
      (x  (y  z))  (x  (¬ y  ¬ z))  ≈⟨ sym (∨-assoc _ _ _)  ∧-cong 
                                            sym (∨-assoc _ _ _) 
      ((x  y)  z)  ((x  ¬ y)  ¬ z)  

    lem₄' = begin
      ¬ ((y  z)  ¬ (y  z))    ≈⟨ deMorgan₁ _ _ 
      ¬ (y  z)  ¬ ¬ (y  z)    ≈⟨ deMorgan₂ _ _  ∨-cong  ¬-involutive _ 
      (¬ y  ¬ z)  (y  z)      ≈⟨ lemma₂ _ _ _ _ 
      ((¬ y  y)  (¬ z  y)) 
      ((¬ y  z)  (¬ z  z))    ≈⟨ (∨-complementˡ _  ∧-cong  ∨-comm _ _)
                                       ∧-cong 
                                   (refl  ∧-cong  ∨-complementˡ _) 
      (  (y  ¬ z)) 
      ((¬ y  z)  )            ≈⟨ ∧-identityˡ _  ∧-cong  ∧-identityʳ _ 
      (y  ¬ z)  (¬ y  z)      

    lem₄ = begin
      ¬ (x  ((y  z)  ¬ (y  z)))  ≈⟨ deMorgan₁ _ _ 
      ¬ x  ¬ ((y  z)  ¬ (y  z))  ≈⟨ refl  ∨-cong  lem₄' 
      ¬ x  ((y  ¬ z)  (¬ y  z))  ≈⟨ ∨-∧-distribˡ _ _ _ 
      (¬ x  (y      ¬ z)) 
      (¬ x  (¬ y  z))              ≈⟨ sym (∨-assoc _ _ _)  ∧-cong 
                                        sym (∨-assoc _ _ _) 
      ((¬ x  y)      ¬ z) 
      ((¬ x  ¬ y)  z)              ≈⟨ ∧-comm _ _ 
      ((¬ x  ¬ y)  z) 
      ((¬ x  y)      ¬ z)          

    lem₅ = begin
      ((x  ¬ y)  ¬ z) 
      (((¬ x  ¬ y)  z)  ((¬ x  y)  ¬ z))    ≈⟨ sym $ ∧-assoc _ _ _ 
      (((x  ¬ y)  ¬ z)  ((¬ x  ¬ y)  z)) 
      ((¬ x  y)  ¬ z)                          ≈⟨ ∧-comm _ _  ∧-cong  refl 
      (((¬ x  ¬ y)  z)  ((x  ¬ y)  ¬ z)) 
      ((¬ x  y)  ¬ z)                          ≈⟨ ∧-assoc _ _ _ 
      ((¬ x  ¬ y)  z) 
      (((x  ¬ y)  ¬ z)  ((¬ x  y)  ¬ z))    

  ⊕-isSemigroup : IsSemigroup _⊕_
  ⊕-isSemigroup = record
    { isEquivalence = isEquivalence
    ; assoc         = ⊕-assoc
    ; ∙-cong        = ⊕-cong
    }

  ⊕-⊥-isMonoid : IsMonoid _⊕_ 
  ⊕-⊥-isMonoid = record
    { isSemigroup = ⊕-isSemigroup
    ; identity    = ⊕-identity
    }

  ⊕-⊥-isGroup : IsGroup _⊕_  id
  ⊕-⊥-isGroup = record
    { isMonoid = ⊕-⊥-isMonoid
    ; inverse  = ⊕-inverse
    ; ⁻¹-cong  = id
    }

  ⊕-⊥-isAbelianGroup : IsAbelianGroup _⊕_  id
  ⊕-⊥-isAbelianGroup = record
    { isGroup = ⊕-⊥-isGroup
    ; comm    = ⊕-comm
    }

  ⊕-∧-isRing : IsRing _⊕_ _∧_ id  
  ⊕-∧-isRing = record
    { +-isAbelianGroup = ⊕-⊥-isAbelianGroup
    ; *-isMonoid = ∧-⊤-isMonoid
    ; distrib = ∧-distrib-⊕
    }

  isCommutativeRing : IsCommutativeRing _⊕_ _∧_ id  
  isCommutativeRing = record
    { isRing = ⊕-∧-isRing
    ; *-comm = ∧-comm
    }

  commutativeRing : CommutativeRing _ _
  commutativeRing = record
    { _+_               = _⊕_
    ; _*_               = _∧_
    ; -_                = id
    ; 0#                = 
    ; 1#                = 
    ; isCommutativeRing = isCommutativeRing
    }

infixl 6 _⊕_

_⊕_ : Op₂ Carrier
x  y = (x  y)  ¬ (x  y)

module DefaultXorRing = XorRing _⊕_  _ _  refl)