------------------------------------------------------------------------
-- The Agda standard library
--
-- Morphisms between algebraic structures
------------------------------------------------------------------------

module Algebra.Morphism where

open import Relation.Binary
open import Algebra
open import Algebra.FunctionProperties
import Algebra.Properties.Group as GroupP
open import Function
open import Level
import Relation.Binary.EqReasoning as EqR

------------------------------------------------------------------------
-- Basic definitions

module Definitions {f t }
                   (From : Set f) (To : Set t) (_≈_ : Rel To ) where
  Morphism : Set _
  Morphism = From  To

  Homomorphic₀ : Morphism  From  To  Set _
  Homomorphic₀ ⟦_⟧   =     

  Homomorphic₁ : Morphism  Fun₁ From  Op₁ To  Set _
  Homomorphic₁ ⟦_⟧ ∙_ ∘_ =  x    x   (  x )

  Homomorphic₂ : Morphism  Fun₂ From  Op₂ To  Set _
  Homomorphic₂ ⟦_⟧ _∙_ _∘_ =
     x y   x  y   ( x    y )

------------------------------------------------------------------------
-- Structure homomorphisms

module _ {c₁ ℓ₁ c₂ ℓ₂}
         (From : Semigroup c₁ ℓ₁)
         (To   : Semigroup c₂ ℓ₂) where

  private
    module F = Semigroup From
    module T = Semigroup To
  open Definitions F.Carrier T.Carrier T._≈_

  record IsSemigroupMorphism (⟦_⟧ : Morphism) :
         Set (c₁  ℓ₁  c₂  ℓ₂) where
    field
      ⟦⟧-cong : ⟦_⟧ Preserves F._≈_  T._≈_
      ∙-homo  : Homomorphic₂ ⟦_⟧ F._∙_ T._∙_

  syntax IsSemigroupMorphism From To F = F Is From -Semigroup⟶ To

module _ {c₁ ℓ₁ c₂ ℓ₂}
         (From : Monoid c₁ ℓ₁)
         (To   : Monoid c₂ ℓ₂) where

  private
    module F = Monoid From
    module T = Monoid To
  open Definitions F.Carrier T.Carrier T._≈_

  record IsMonoidMorphism (⟦_⟧ : Morphism) :
         Set (c₁  ℓ₁  c₂  ℓ₂) where
    field
      sm-homo : IsSemigroupMorphism F.semigroup T.semigroup ⟦_⟧
      ε-homo  : Homomorphic₀ ⟦_⟧ F.ε T.ε

    open IsSemigroupMorphism sm-homo public

  syntax IsMonoidMorphism From To F = F Is From -Monoid⟶ To

module _ {c₁ ℓ₁ c₂ ℓ₂}
         (From : CommutativeMonoid c₁ ℓ₁)
         (To   : CommutativeMonoid c₂ ℓ₂) where

  private
    module F = CommutativeMonoid From
    module T = CommutativeMonoid To
  open Definitions F.Carrier T.Carrier T._≈_

  record IsCommutativeMonoidMorphism (⟦_⟧ : Morphism) :
         Set (c₁  ℓ₁  c₂  ℓ₂) where
    field
      mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧

    open IsMonoidMorphism mn-homo public

  syntax IsCommutativeMonoidMorphism From To F = F Is From -CommutativeMonoid⟶ To

module _ {c₁ ℓ₁ c₂ ℓ₂}
         (From : IdempotentCommutativeMonoid c₁ ℓ₁)
         (To   : IdempotentCommutativeMonoid c₂ ℓ₂) where

  private
    module F = IdempotentCommutativeMonoid From
    module T = IdempotentCommutativeMonoid To
  open Definitions F.Carrier T.Carrier T._≈_

  record IsIdempotentCommutativeMonoidMorphism (⟦_⟧ : Morphism) :
         Set (c₁  ℓ₁  c₂  ℓ₂) where
    field
      mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧

    open IsMonoidMorphism mn-homo public

    isCommutativeMonoidMorphism :
      IsCommutativeMonoidMorphism F.commutativeMonoid T.commutativeMonoid ⟦_⟧
    isCommutativeMonoidMorphism = record { mn-homo = mn-homo }

  syntax IsIdempotentCommutativeMonoidMorphism From To F = F Is From -IdempotentCommutativeMonoid⟶ To

module _ {c₁ ℓ₁ c₂ ℓ₂}
         (From : Group c₁ ℓ₁)
         (To   : Group c₂ ℓ₂) where

  private
    module F = Group From
    module T = Group To
  open Definitions F.Carrier T.Carrier T._≈_

  record IsGroupMorphism (⟦_⟧ : Morphism) :
         Set (c₁  ℓ₁  c₂  ℓ₂) where
    field
      mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧

    open IsMonoidMorphism mn-homo public

    ⁻¹-homo : Homomorphic₁ ⟦_⟧ F._⁻¹ T._⁻¹
    ⁻¹-homo x = let open EqR T.setoid in T.uniqueˡ-⁻¹  x F.⁻¹   x  $ begin
       x F.⁻¹  T.∙  x  ≈⟨ T.sym (∙-homo (x F.⁻¹) x) 
       x F.⁻¹ F.∙ x      ≈⟨ ⟦⟧-cong (F.inverseˡ x) 
       F.ε               ≈⟨ ε-homo 
      T.ε 

  syntax IsGroupMorphism From To F = F Is From -Group⟶ To

module _ {c₁ ℓ₁ c₂ ℓ₂}
         (From : AbelianGroup c₁ ℓ₁)
         (To   : AbelianGroup c₂ ℓ₂) where

  private
    module F = AbelianGroup From
    module T = AbelianGroup To
  open Definitions F.Carrier T.Carrier T._≈_

  record IsAbelianGroupMorphism (⟦_⟧ : Morphism) :
         Set (c₁  ℓ₁  c₂  ℓ₂) where
    field
      gp-homo : IsGroupMorphism F.group T.group ⟦_⟧

    open IsGroupMorphism gp-homo public

  syntax IsAbelianGroupMorphism From To F = F Is From -AbelianGroup⟶ To

module _ {c₁ ℓ₁ c₂ ℓ₂}
         (From : Ring c₁ ℓ₁)
         (To   : Ring c₂ ℓ₂) where

  private
    module F = Ring From
    module T = Ring To
  open Definitions F.Carrier T.Carrier T._≈_

  record IsRingMorphism (⟦_⟧ : Morphism) :
         Set (c₁  ℓ₁  c₂  ℓ₂) where
    field
      +-abgp-homo : ⟦_⟧ Is F.+-abelianGroup -AbelianGroup⟶ T.+-abelianGroup
      *-mn-homo   : ⟦_⟧ Is F.*-monoid -Monoid⟶ T.*-monoid

  syntax IsRingMorphism From To F = F Is From -Ring⟶ To