------------------------------------------------------------------------
-- The Agda standard library
--
-- Bisimilarity for Streams
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --sized-types #-}

module Codata.Sized.Stream.Bisimilarity where

open import Size
open import Codata.Sized.Thunk
open import Codata.Sized.Stream
open import Level
open import Data.List.NonEmpty as List⁺ using (_∷_)
open import Data.List.Relation.Binary.Pointwise.Base using (Pointwise; []; _∷_)
open import Relation.Binary.Core using (Rel; REL)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Definitions
  using (Reflexive; Symmetric; Transitive; Sym; Trans)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.PropositionalEquality.Core as  using (_≡_)
import Relation.Binary.PropositionalEquality.Properties as 

private
  variable
    a b c p q r : Level
    A : Set a
    B : Set b
    C : Set c
    i : Size

data Bisim {A : Set a} {B : Set b} (R : REL A B r) i :
           REL (Stream A ) (Stream B ) (a  b  r) where
  _∷_ :  {x y xs ys}  R x y  Thunk^R (Bisim R) i xs ys 
        Bisim R i (x  xs) (y  ys)

infixr 5 _∷_

module _ {R : Rel A r} where

 reflexive : Reflexive R  Reflexive (Bisim R i)
 reflexive refl^R {r  rs} = refl^R  λ where .force  reflexive refl^R

module _ {P : REL A B p} {Q : REL B A q} where

 symmetric : Sym P Q  Sym (Bisim P i) (Bisim Q i)
 symmetric sym^PQ (p  ps) = sym^PQ p  λ where .force  symmetric sym^PQ (ps .force)

module _ {P : REL A B p} {Q : REL B C q} {R : REL A C r} where

 transitive : Trans P Q R  Trans (Bisim P i) (Bisim Q i) (Bisim R i)
 transitive trans^PQR (p  ps) (q  qs) =
   trans^PQR p q  λ where .force  transitive trans^PQR (ps .force) (qs .force)


isEquivalence : {R : Rel A r}  IsEquivalence R  IsEquivalence (Bisim R i)
isEquivalence equiv^R = record
  { refl  = reflexive equiv^R.refl
  ; sym   = symmetric equiv^R.sym
  ; trans = transitive equiv^R.trans
  } where module equiv^R = IsEquivalence equiv^R

setoid : Setoid a r  Size  Setoid a (a  r)
setoid S i = record
  { isEquivalence = isEquivalence {i = i} (Setoid.isEquivalence S)
  }

module _ {R : REL A B r} where

  ++⁺ :  {as bs xs ys}  Pointwise R as bs 
        Bisim R i xs ys  Bisim R i (as ++ xs) (bs ++ ys)
  ++⁺ []       rs = rs
  ++⁺ (r  pw) rs = r  λ where .force  ++⁺ pw rs

  ⁺++⁺ :  {as bs xs ys}  Pointwise R (List⁺.toList as) (List⁺.toList bs) 
         Thunk^R (Bisim R) i xs ys  Bisim R i (as ⁺++ xs) (bs ⁺++ ys)
  ⁺++⁺ (r  pw) rs = r  λ where .force  ++⁺ pw (rs .force)

------------------------------------------------------------------------
-- Pointwise Equality as a Bisimilarity

module _ {A : Set a} where

 infix 1 _⊢_≈_
 _⊢_≈_ :  i  Stream A   Stream A   Set a
 _⊢_≈_ = Bisim _≡_

 refl :  {i}  Reflexive (i ⊢_≈_)
 refl = reflexive ≡.refl

 sym :  {i}  Symmetric (i ⊢_≈_)
 sym = symmetric ≡.sym

 trans :  {i}  Transitive (i ⊢_≈_)
 trans = transitive ≡.trans

module ≈-Reasoning {a} {A : Set a} {i} where

  open import Relation.Binary.Reasoning.Setoid (setoid (≡.setoid A) i) public