------------------------------------------------------------------------
-- The Agda standard library
--
-- Bisimilarity for Cowriter
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --sized-types #-}

module Codata.Sized.Cowriter.Bisimilarity where

open import Level using (Level; _⊔_)
open import Size
open import Codata.Sized.Thunk
open import Codata.Sized.Cowriter
open import Relation.Binary.Core using (REL; Rel)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions
  using (Reflexive; Symmetric; Transitive; Sym; Trans)
open import Relation.Binary.PropositionalEquality.Core as  using (_≡_)
import Relation.Binary.PropositionalEquality.Properties as 

private
  variable
    a b c p q pq r s rs v w x : Level
    A : Set a
    B : Set b
    C : Set c
    V : Set v
    W : Set w
    X : Set x
    i : Size

data Bisim {V : Set v} {W : Set w} {A : Set a} {B : Set b}
           (R : REL V W r) (S : REL A B s) (i : Size) :
           REL (Cowriter V A ) (Cowriter W B ) (r  s  v  w  a  b) where
  [_] :  {a b}  S a b  Bisim R S i [ a ] [ b ]
  _∷_ :  {x y xs ys}  R x y  Thunk^R (Bisim R S) i xs ys 
        Bisim R S i (x  xs) (y  ys)

infixr 5 _∷_

module _ {R : Rel W r} {S : Rel A s}
         (refl^R : Reflexive R) (refl^S : Reflexive S) where

 reflexive : Reflexive (Bisim R S i)
 reflexive {x = [ a ]}  = [ refl^S ]
 reflexive {x = w  ws} = refl^R  λ where .force  reflexive

module _ {R : REL V W r} {S : REL W V s} {P : REL A B p} {Q : REL B A q}
         (sym^RS : Sym R S) (sym^PQ : Sym P Q) where

 symmetric : Sym (Bisim R P i) (Bisim S Q i)
 symmetric [ a ]    = [ sym^PQ a ]
 symmetric (p  ps) = sym^RS p  λ where .force  symmetric (ps .force)


module _ {R : REL V W r} {S : REL W X s} {RS : REL V X rs}
         {P : REL A B p} {Q : REL B C q} {PQ : REL A C pq}
         (trans^RS : Trans R S RS) (trans^PQ : Trans P Q PQ) where

 transitive : Trans (Bisim R P i) (Bisim S Q i) (Bisim RS PQ i)
 transitive [ p ]    [ q ]    = [ trans^PQ p q ]
 transitive (p  ps) (q  qs) =
   trans^RS p q  λ where .force  transitive (ps .force) (qs .force)

-- Pointwise Equality as a Bisimilarity
------------------------------------------------------------------------

module _ {W : Set w} {A : Set a} where

  infix 1 _⊢_≈_
  _⊢_≈_ :  i  Cowriter W A   Cowriter W A   Set (a  w)
  _⊢_≈_ = Bisim _≡_ _≡_

  refl : Reflexive (i ⊢_≈_)
  refl = reflexive ≡.refl ≡.refl

  fromEq :  {as bs}  as  bs  i  as  bs
  fromEq ≡.refl = refl

  sym : Symmetric (i ⊢_≈_)
  sym = symmetric ≡.sym ≡.sym

  trans : Transitive (i ⊢_≈_)
  trans = transitive ≡.trans ≡.trans

module _ {R : Rel W r} {S : Rel A s}
         (equiv^R : IsEquivalence R) (equiv^S : IsEquivalence S) where

  private
    module equiv^R = IsEquivalence equiv^R
    module equiv^S = IsEquivalence equiv^S

  isEquivalence : IsEquivalence (Bisim R S i)
  isEquivalence = record
    { refl  = reflexive equiv^R.refl equiv^S.refl
    ; sym   = symmetric equiv^R.sym equiv^S.sym
    ; trans = transitive equiv^R.trans equiv^S.trans
    }

setoid : Setoid w r  Setoid a s  Size  Setoid (w  a) (w  a  r  s)
setoid R S i = record
  { isEquivalence = isEquivalence (Setoid.isEquivalence R)
                                  (Setoid.isEquivalence S) {i = i}
  }

module ≈-Reasoning {W : Set w} {A : Set a} {i} where

  open import Relation.Binary.Reasoning.Setoid
              (setoid (≡.setoid W) (≡.setoid A) i) public