Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Propertiers of any for containers
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Container.Morphism.Properties where

open import Level using (_⊔_; suc)
open import Function.Base as F using (_$_)
open import Data.Product.Base using (; proj₁; proj₂; _,_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.PropositionalEquality.Core as  using (_≡_; _≗_)

open import Data.Container.Core
open import Data.Container.Morphism
open import Data.Container.Relation.Binary.Equality.Setoid

-- Identity

module _ {s p} (C : Container s p) where

  id-correct :  {x} {X : Set x}   id C  {X = X}  F.id
  id-correct x = ≡.refl

-- Composition.

module _ {s₁ s₂ s₃ p₁ p₂ p₃}
         {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {C₃ : Container s₃ p₃}
         where

  ∘-correct : (f : C₂  C₃) (g : C₁  C₂)   {x} {X : Set x} 
               f  g  {X = X}  ( f  F.∘  g )
  ∘-correct f g xs = ≡.refl

module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} where

  -- Naturality.

  Natural :  x e  (∀ {X : Set x}   C₁  X   C₂  X) 
            Set (s₁  s₂  p₁  p₂  suc (x  e))
  Natural x e m =
     {X : Set x} (Y : Setoid x e)  let module Y = Setoid Y in
    (f : X  Y.Carrier) (xs :  C₁  X) 
    Eq Y C₂ (m $ map f xs) (map f $ m xs)

  -- Container morphisms are natural.

  natural :  (m : C₁  C₂) x e  Natural x e  m 
  natural m x e Y f xs = refl Y C₂

module _ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where

  -- Natural transformations.

  NT :  x e  Set (s₁  s₂  p₁  p₂  suc (x  e))
  NT x e =  λ (m :  {X : Set x}   C₁  X   C₂  X)  Natural x e m

module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} where

  -- All natural functions of the right type are container morphisms.

  complete :  {e}  (nt : NT C₁ C₂ p₁ e) 
       λ m  (X : Setoid p₁ e)  let module X = Setoid X in
       xs  Eq X C₂ (proj₁ nt xs) ( m  xs)
  complete (nt , nat) =
    (m , λ X xs  nat X (proj₂ xs) (proj₁ xs , F.id)) where

    m : C₁  C₂
    m .shape    = λ s  proj₁ (nt (s , F.id))
    m .position = proj₂ (nt (_ , F.id))