Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Bundles using (Setoid)
module Data.Container.Relation.Binary.Equality.Setoid {c e} (S : Setoid c e) where
open import Level using (_⊔_; suc)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions
using (Reflexive; Symmetric; Transitive)
open import Data.Container.Core
open import Data.Container.Relation.Binary.Pointwise
import Data.Container.Relation.Binary.Pointwise.Properties as Pw
private
module S = Setoid S
open S using (_≈_) renaming (Carrier to X)
module _ {s p} (C : Container s p) where
Eq : Rel (⟦ C ⟧ X) (e ⊔ s ⊔ p)
Eq = Pointwise C _≈_
refl : Reflexive Eq
refl = Pw.refl C _ S.refl
sym : Symmetric Eq
sym = Pw.sym C _ S.sym
trans : Transitive Eq
trans = Pw.trans C _ S.trans
isEquivalence : IsEquivalence Eq
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
setoid : Setoid (s ⊔ p ⊔ c) (s ⊔ p ⊔ e)
setoid = record
{ isEquivalence = isEquivalence
}