Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Relationships between properties of functions. See
-- `Function.Consequences.Propositional` for specialisations to
-- propositional equality.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Function.Consequences where

open import Data.Product.Base as Product
open import Function.Definitions
open import Level using (Level)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Definitions using (Reflexive; Symmetric; Transitive)
open import Relation.Nullary.Negation.Core using (¬_; contraposition)

private
  variable
    a b ℓ₁ ℓ₂ : Level
    A B : Set a
    ≈₁ ≈₂ : Rel A ℓ₁
    f f⁻¹ : A  B

------------------------------------------------------------------------
-- Injective

contraInjective :  (≈₂ : Rel B ℓ₂)  Injective ≈₁ ≈₂ f 
                   {x y}  ¬ (≈₁ x y)  ¬ (≈₂ (f x) (f y))
contraInjective _ inj p = contraposition inj p

------------------------------------------------------------------------
-- Inverseˡ

inverseˡ⇒surjective :  (≈₂ : Rel B ℓ₂) 
                      Inverseˡ ≈₁ ≈₂ f f⁻¹ 
                      Surjective ≈₁ ≈₂ f
inverseˡ⇒surjective ≈₂ invˡ y = (_ , invˡ)

------------------------------------------------------------------------
-- Inverseʳ

inverseʳ⇒injective :  (≈₂ : Rel B ℓ₂) f 
                     Reflexive ≈₂ 
                     Symmetric ≈₁ 
                     Transitive ≈₁ 
                     Inverseʳ ≈₁ ≈₂ f f⁻¹ 
                     Injective ≈₁ ≈₂ f
inverseʳ⇒injective ≈₂ f refl sym trans invʳ {x} {y} fx≈fy =
  trans (sym (invʳ refl)) (invʳ fx≈fy)

------------------------------------------------------------------------
-- Inverseᵇ

inverseᵇ⇒bijective :  (≈₂ : Rel B ℓ₂) 
                     Reflexive ≈₂ 
                     Symmetric ≈₁ 
                     Transitive ≈₁ 
                     Inverseᵇ ≈₁ ≈₂ f f⁻¹ 
                     Bijective ≈₁ ≈₂ f
inverseᵇ⇒bijective {f = f} ≈₂ refl sym trans (invˡ , invʳ) =
  (inverseʳ⇒injective ≈₂ f refl sym trans invʳ , inverseˡ⇒surjective ≈₂ invˡ)

------------------------------------------------------------------------
-- StrictlySurjective

surjective⇒strictlySurjective :  (≈₂ : Rel B ℓ₂) 
                                 Reflexive ≈₁ 
                                 Surjective ≈₁ ≈₂ f 
                                 StrictlySurjective ≈₂ f
surjective⇒strictlySurjective _ refl surj x =
  Product.map₂  v  v refl) (surj x)

strictlySurjective⇒surjective : Transitive ≈₂ 
                                 Congruent ≈₁ ≈₂ f 
                                 StrictlySurjective ≈₂ f 
                                 Surjective ≈₁ ≈₂ f
strictlySurjective⇒surjective trans cong surj x =
  Product.map₂  fy≈x z≈y  trans (cong z≈y) fy≈x) (surj x)

------------------------------------------------------------------------
-- StrictlyInverseˡ

inverseˡ⇒strictlyInverseˡ :  (≈₁ : Rel A ℓ₁) (≈₂ : Rel B ℓ₂) 
                            Reflexive ≈₁ 
                            Inverseˡ ≈₁ ≈₂ f f⁻¹ 
                            StrictlyInverseˡ ≈₂ f f⁻¹
inverseˡ⇒strictlyInverseˡ _ _ refl sinv x = sinv refl

strictlyInverseˡ⇒inverseˡ : Transitive ≈₂ 
                            Congruent ≈₁ ≈₂ f 
                            StrictlyInverseˡ ≈₂ f f⁻¹ 
                            Inverseˡ ≈₁ ≈₂ f f⁻¹
strictlyInverseˡ⇒inverseˡ trans cong sinv {x} y≈f⁻¹x =
  trans (cong y≈f⁻¹x) (sinv x)

------------------------------------------------------------------------
-- StrictlyInverseʳ

inverseʳ⇒strictlyInverseʳ :  (≈₁ : Rel A ℓ₁) (≈₂ : Rel B ℓ₂) 
                            Reflexive ≈₂ 
                            Inverseʳ ≈₁ ≈₂ f f⁻¹ 
                            StrictlyInverseʳ ≈₁ f f⁻¹
inverseʳ⇒strictlyInverseʳ _ _ refl sinv x = sinv refl

strictlyInverseʳ⇒inverseʳ : Transitive ≈₁ 
                            Congruent ≈₂ ≈₁ f⁻¹ 
                            StrictlyInverseʳ ≈₁ f f⁻¹ 
                            Inverseʳ ≈₁ ≈₂ f f⁻¹
strictlyInverseʳ⇒inverseʳ trans cong sinv {x} y≈f⁻¹x =
  trans (cong y≈f⁻¹x) (sinv x)