Source code on Github{-# OPTIONS --cubical-compatible #-}
module Class.Semigroup.Instances where
open import Class.Prelude
open import Class.Semigroup.Core
instance
Semigroup-List : Semigroup (List A)
Semigroup-List ._◇_ = _++_
Semigroup-List⁺ : Semigroup (List⁺ A)
Semigroup-List⁺ ._◇_ = _⁺++⁺_
Semigroup-∃Vec : Semigroup (∃ (Vec A))
Semigroup-∃Vec ._◇_ (_ , v) (_ , v′) = _ , (v V.++ v′)
where import Data.Vec as V
Semigroup-String : Semigroup String
Semigroup-String ._◇_ = Str._++_
where import Data.String as Str
Semigroup-Maybe : ⦃ Semigroup A ⦄ → Semigroup (Maybe A)
Semigroup-Maybe ._◇_ = λ where
(just x) (just y) → just (x ◇ y)
(just x) nothing → just x
nothing m → m
SemigroupLaws-Maybe : ⦃ _ : Semigroup A ⦄ → ⦃ SemigroupLaws≡ A ⦄
→ SemigroupLaws≡ (Maybe A)
SemigroupLaws-Maybe {A = A} = λ where
.◇-assocʳ → λ where
(just _) (just _) (just _) → cong just (◇-assocʳ _ _ _)
(just _) (just _) nothing → refl
(just _) nothing _ → refl
nothing (just _) _ → refl
nothing nothing _ → refl
.◇-comm → λ where
(just x) (just y) → cong just (◇-comm x y)
(just _) nothing → refl
nothing (just _) → refl
nothing nothing → refl
where open Alg≡
module _ where
open import Data.Nat
open import Data.Nat.Properties
Semigroup-ℕ-+ = Semigroup ℕ ∋ λ where ._◇_ → _+_
SemigroupLaws-ℕ-+ = SemigroupLaws ℕ _≡_ ∋
record {◇-assocʳ = +-assoc; ◇-comm = +-comm}
where instance _ = Semigroup-ℕ-+
Semigroup-ℕ-* = Semigroup ℕ ∋ λ where ._◇_ → _*_
SemigroupLaws-ℕ-* = SemigroupLaws ℕ _≡_ ∋
record {◇-assocʳ = *-assoc; ◇-comm = *-comm}
where instance _ = Semigroup-ℕ-*
module _ where
open import Data.Nat.Binary
open import Data.Nat.Binary.Properties
Semigroup-ℕᵇ-+ = Semigroup ℕᵇ ∋ λ where ._◇_ → _+_
SemigroupLaws-ℕᵇ-+ = SemigroupLaws ℕᵇ _≡_ ∋
record {◇-assocʳ = +-assoc; ◇-comm = +-comm}
where instance _ = Semigroup-ℕᵇ-+
module _ where
open import Data.Integer
open import Data.Integer.Properties
Semigroup-ℤ-+ = Semigroup ℤ ∋ λ where ._◇_ → _+_
SemigroupLaws-ℤ-+ = SemigroupLaws ℤ _≡_ ∋
record {◇-assocʳ = +-assoc; ◇-comm = +-comm}
where instance _ = Semigroup-ℤ-+
Semigroup-ℤ-* = Semigroup ℤ ∋ λ where ._◇_ → _*_
SemigroupLaws-ℤ-* = SemigroupLaws ℤ _≡_ ∋
record {◇-assocʳ = *-assoc; ◇-comm = *-comm}
where instance _ = Semigroup-ℤ-*