Source code on Github
{-# OPTIONS --cubical-compatible #-}
module Class.Semigroup.Instances where

open import Class.Prelude
open import Class.Semigroup.Core

instance
  Semigroup-List : Semigroup (List A)
  Semigroup-List ._◇_ = _++_

  Semigroup-List⁺ : Semigroup (List⁺ A)
  Semigroup-List⁺ ._◇_ = _⁺++⁺_

  Semigroup-∃Vec : Semigroup ( (Vec A))
  Semigroup-∃Vec ._◇_ (_ , v) (_ , v′) = _ , (v V.++ v′)
    where import Data.Vec as V

  Semigroup-String : Semigroup String
  Semigroup-String ._◇_ = Str._++_
    where import Data.String as Str

  Semigroup-Maybe :  Semigroup A   Semigroup (Maybe A)
  Semigroup-Maybe ._◇_ = λ where
    (just x) (just y)  just (x  y)
    (just x) nothing   just x
    nothing  m         m

  SemigroupLaws-Maybe :  _ : Semigroup A    SemigroupLaws≡ A 
     SemigroupLaws≡ (Maybe A)
  SemigroupLaws-Maybe {A = A} = λ where
    .◇-assocʳ  λ where
      (just _) (just _) (just _)  cong just (◇-assocʳ _ _ _)
      (just _) (just _) nothing   refl
      (just _) nothing  _         refl
      nothing  (just _) _         refl
      nothing  nothing  _         refl
    .◇-comm  λ where
      (just x) (just y)  cong just (◇-comm x y)
      (just _) nothing   refl
      nothing  (just _)  refl
      nothing  nothing   refl
   where open Alg≡

-- ** natural numbers
module _ where
  open import Data.Nat
  open import Data.Nat.Properties

  Semigroup-ℕ-+ = Semigroup   λ where ._◇_  _+_
  SemigroupLaws-ℕ-+ = SemigroupLaws  _≡_ 
    record {◇-assocʳ = +-assoc; ◇-comm = +-comm}
    where instance _ = Semigroup-ℕ-+

  Semigroup-ℕ-* = Semigroup   λ where ._◇_  _*_
  SemigroupLaws-ℕ-* = SemigroupLaws  _≡_ 
    record {◇-assocʳ = *-assoc; ◇-comm = *-comm}
    where instance _ = Semigroup-ℕ-*

-- ** binary natural numbers
module _ where
  open import Data.Nat.Binary
  open import Data.Nat.Binary.Properties

  Semigroup-ℕᵇ-+ = Semigroup ℕᵇ  λ where ._◇_  _+_
  SemigroupLaws-ℕᵇ-+ = SemigroupLaws ℕᵇ _≡_ 
    record {◇-assocʳ = +-assoc; ◇-comm = +-comm}
    where instance _ = Semigroup-ℕᵇ-+

-- ** integers
module _ where
  open import Data.Integer
  open import Data.Integer.Properties

  Semigroup-ℤ-+ = Semigroup   λ where ._◇_  _+_
  SemigroupLaws-ℤ-+ = SemigroupLaws  _≡_ 
    record {◇-assocʳ = +-assoc; ◇-comm = +-comm}
    where instance _ = Semigroup-ℤ-+

  Semigroup-ℤ-* = Semigroup   λ where ._◇_  _*_
  SemigroupLaws-ℤ-* = SemigroupLaws  _≡_ 
    record {◇-assocʳ = *-assoc; ◇-comm = *-comm}
    where instance _ = Semigroup-ℤ-*