{-# OPTIONS --without-K --safe #-}
module Categories.Monad.Relative where
open import Level
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; Endofunctor; _∘F_) renaming (id to idF)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism hiding (_≃_)
open import Categories.NaturalTransformation.Equivalence
open NaturalIsomorphism
private
variable
o ℓ e o′ ℓ′ e′ : Level
C : Category o ℓ e
D : Category o′ ℓ′ e′
record Monad {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (J : Functor C D) : Set (o ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module C = Category C
module D = Category D
module J = Functor J
open D using (_⇒_; _∘_; _≈_)
field
F₀ : C.Obj → D.Obj
unit : {c : C.Obj} → J.₀ c ⇒ F₀ c
extend : {x y : C.Obj} → (J.₀ x ⇒ F₀ y) → F₀ x ⇒ F₀ y
identityʳ : {x y : C.Obj} { k : J.₀ x ⇒ F₀ y} → extend k ∘ unit ≈ k
identityˡ : {x : C.Obj} → extend {x} unit ≈ D.id
assoc : {x y z : C.Obj} {k : J.₀ x ⇒ F₀ y} {l : J.₀ y ⇒ F₀ z} → extend (extend l ∘ k) ≈ extend l ∘ extend k
sym-assoc : {x y z : C.Obj} {k : J.₀ x ⇒ F₀ y} {l : J.₀ y ⇒ F₀ z} → extend l ∘ extend k ≈ extend (extend l ∘ k)
extend-≈ : {x y : C.Obj} {k h : J.₀ x ⇒ F₀ y} → k ≈ h → extend k ≈ extend h
RMonad⇒Functor : {J : Functor C D} → Monad J → Functor C D
RMonad⇒Functor {C = C} {D = D} {J = J} r = record
{ F₀ = F₀
; F₁ = λ f → extend (unit ∘ J.₁ f)
; identity = identity′
; homomorphism = hom′
; F-resp-≈ = λ f≈g → extend-≈ (∘-resp-≈ʳ (J.F-resp-≈ f≈g))
}
where
open Monad r
module C = Category C
module D = Category D
module J = Functor J
open Category D hiding (identityˡ; identityʳ; assoc)
open HomReasoning
open MR D
identity′ : {c : C.Obj} → extend {c} (unit ∘ J.₁ C.id) ≈ id
identity′ = begin
extend (unit ∘ J.₁ C.id) ≈⟨ extend-≈ (elimʳ J.identity) ⟩
extend unit ≈⟨ identityˡ ⟩
id ∎
hom′ : {X Y Z : C.Obj} {f : X C.⇒ Y} {g : Y C.⇒ Z} →
extend (unit ∘ J.₁ (g C.∘ f)) ≈ extend (unit ∘ J.₁ g) ∘ extend (unit ∘ J.F₁ f)
hom′ {f = f} {g} = begin
extend (unit ∘ J.₁ (g C.∘ f)) ≈⟨ extend-≈ (pushʳ J.homomorphism) ⟩
extend ((unit ∘ J.₁ g) ∘ J.₁ f) ≈⟨ extend-≈ (pushˡ (⟺ identityʳ)) ⟩
extend (extend (unit ∘ J.₁ g) ∘ (unit ∘ J.F₁ f)) ≈⟨ assoc ⟩
extend (unit ∘ J.₁ g) ∘ extend (unit ∘ J.F₁ f) ∎