{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category open import Categories.Monad module Categories.Monad.Idempotent {o ℓ e} {C : Category o ℓ e} (M : Monad C) where open import Categories.NaturalTransformation open import Categories.NaturalTransformation.Equivalence open import Categories.Functor private module M = Monad M open NaturalTransformation record Idempotent : Set (o ⊔ ℓ ⊔ e) where field Fη≡ηF : ∀ X → C [ η (M.F ∘ˡ M.η) X ≈ η (M.η ∘ʳ M.F) X ]