{-# OPTIONS --without-K --safe #-}
module Categories.Diagram.Colimit.Lan where
open import Level
open import Categories.Category
open import Categories.Category.Cocomplete
open import Categories.Diagram.Duality
open import Categories.Diagram.Limit.Ran
open import Categories.Functor
open import Categories.Kan
open import Categories.Kan.Duality
private
variable
o ℓ e : Level
C D E : Category o ℓ e
module _ {o ℓ e o′ ℓ′ e′} {C : Category o′ ℓ′ e′} {D : Category o ℓ e}
(F : Functor C D) (X : Functor C E) (Com : Cocomplete (o′ ⊔ ℓ) (ℓ′ ⊔ e) e′ E) where
private
module F = Functor F
module X = Functor X
colimit-is-lan : Lan F X
colimit-is-lan = coRan⇒Lan (limit-is-ran F.op X.op λ G → Colimit⇒coLimit E (Com (Functor.op G)))