{-# OPTIONS --without-K --safe #-} module Categories.Diagram.Colimit.Lan where open import Level open import Categories.Category open import Categories.Category.Cocomplete open import Categories.Diagram.Duality open import Categories.Diagram.Limit.Ran open import Categories.Functor open import Categories.Kan open import Categories.Kan.Duality private variable o ℓ e : Level C D E : Category o ℓ e module _ {o ℓ e o′ ℓ′ e′} {C : Category o′ ℓ′ e′} {D : Category o ℓ e} (F : Functor C D) (X : Functor C E) (Com : Cocomplete (o′ ⊔ ℓ) (ℓ′ ⊔ e) e′ E) where private module F = Functor F module X = Functor X colimit-is-lan : Lan F X colimit-is-lan = coRan⇒Lan (limit-is-ran F.op X.op λ G → Colimit⇒coLimit E (Com (Functor.op G)))