{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category; _[_,_])
module Categories.Category.Monoidal.Construction.Endofunctors
{o ℓ e} (C : Category o ℓ e) where
open import Level using (_⊔_)
open import Categories.Category.Construction.Functors using (Functors; product)
open import Categories.Category.Monoidal
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as MorphismReasoning
import Categories.NaturalTransformation.NaturalIsomorphism as NI
open import Categories.NaturalTransformation using (NaturalTransformation)
open import Categories.NaturalTransformation.NaturalIsomorphism.Functors
using (NI⇒Functors-iso)
private [C,C] = Functors C C
open Functor renaming (F₀ to _$₀_; F₁ to _$₁_)
open NI.NaturalIsomorphism
open NaturalTransformation
open Morphism [C,C] using (_≅_)
open Category C
open HomReasoning
open MorphismReasoning C
Endofunctors-Monoidal : Monoidal [C,C]
Endofunctors-Monoidal = monoidalHelper [C,C] (record
{ ⊗ = product
; unit = idF
; unitorˡ = NI⇒Functors-iso NI.unitorˡ
; unitorʳ = NI⇒Functors-iso NI.unitorʳ
; associator = λ {F G H} → NI⇒Functors-iso (NI.associator H G F)
; unitorˡ-commute = identityˡ
; unitorʳ-commute = λ {_ _ α} → unitorʳ-commute α
; assoc-commute = λ {_ _ α _ _ β _ _ γ} → assoc-commute α β γ
; triangle = identityʳ
; pentagon = λ {F G H I} → pentagon F G H
})
where
unitorʳ-commute : ∀ {F G : Functor C C} (α : [C,C] [ F , G ]) {X} →
id ∘ G $₁ id ∘ η α X ≈ η α X ∘ id
unitorʳ-commute {F} {G} α {X} = begin
id ∘ G $₁ id ∘ η α X ≈⟨ refl⟩∘⟨ elimˡ (identity G) ⟩
id ∘ η α X ≈⟨ id-comm-sym ⟩
η α X ∘ id ∎
assoc-commute : ∀ {F₁ F₂ G₁ G₂ H₁ H₂} (α : [C,C] [ F₁ , F₂ ])
(β : [C,C] [ G₁ , G₂ ]) (γ : [C,C] [ H₁ , H₂ ]) {X} →
id ∘ F₂ $₁ (G₂ $₁ (η γ X)) ∘
F₂ $₁ (η β (H₁ $₀ X)) ∘ η α (G₁ $₀ (H₁ $₀ X))
≈
((F₂ $₁ (G₂ $₁ (η γ X) ∘ η β (H₁ $₀ X))) ∘
η α (G₁ $₀ (H₁ $₀ X))) ∘ id
assoc-commute {F₁} {F₂} {G₁} {G₂} {H₁} {H₂} α β γ = begin
id ∘ F₂ $₁ (G₂ $₁ (η γ _)) ∘ F₂ $₁ (η β _) ∘ η α _ ≈˘⟨ refl⟩∘⟨ pushˡ (homomorphism F₂) ⟩
id ∘ (F₂ $₁ (G₂ $₁ (η γ _) ∘ η β _)) ∘ η α _ ≈⟨ id-comm-sym ⟩
((F₂ $₁ (G₂ $₁ (η γ _) ∘ η β _)) ∘ η α _) ∘ id ∎
pentagon : ∀ (F G H : Functor C C) {X} →
((F $₁ id) ∘ id) ∘ id ∘ (F $₁ (G $₁ (H $₁ id))) ∘ id ≈
id ∘ id {F $₀ (G $₀ (H $₀ X))}
pentagon F G H = begin
((F $₁ id) ∘ id) ∘ id ∘ (F $₁ (G $₁ (H $₁ id))) ∘ id
≈⟨ elimˡ (identity F) ⟩∘⟨ refl⟩∘⟨ F-resp-≈ F (F-resp-≈ G (identity H)) ⟩∘⟨refl ⟩
id ∘ id ∘ (F $₁ (G $₁ id)) ∘ id
≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-resp-≈ F (identity G) ⟩∘⟨refl ⟩
id ∘ id ∘ (F $₁ id) ∘ id
≈⟨ refl⟩∘⟨ refl⟩∘⟨ elimˡ (identity F) ⟩
id ∘ id ∘ id
≈⟨ identityˡ ⟩
id ∘ id
∎
Endofunctors : MonoidalCategory (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) (o ⊔ e)
Endofunctors = record { U = [C,C] ; monoidal = Endofunctors-Monoidal }