{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
module Categories.Category.Cocartesian {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
private
module 𝒞 = Category 𝒞
open Category 𝒞
open HomReasoning
variable
A B C D : Obj
f g h i : A ⇒ B
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Category.Cartesian 𝒞.op
open import Categories.Category.Cartesian.Monoidal using (module CartesianMonoidal)
import Categories.Category.Cartesian.SymmetricMonoidal as CSM
open import Categories.Category.Monoidal using (Monoidal)
open import Categories.Category.Monoidal.Symmetric
open import Categories.Morphism 𝒞
open import Categories.Morphism.Properties 𝒞
open import Categories.Morphism.Duality 𝒞
open import Categories.Morphism.Reasoning 𝒞
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
open import Categories.Object.Initial 𝒞 using (Initial)
open import Categories.Object.Coproduct 𝒞
open import Categories.Object.Duality 𝒞
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.Functor.Bifunctor
record BinaryCoproducts : Set (levelOfTerm 𝒞) where
infixr 6 _+_
infixr 7 _+₁_
field
coproduct : ∀ {A B} → Coproduct A B
module coproduct {A} {B} = Coproduct (coproduct {A} {B})
_+_ : Obj → Obj → Obj
A + B = coproduct.A+B {A} {B}
open coproduct
using (i₁; i₂; [_,_]; inject₁; inject₂; []-cong₂; ∘-distribˡ-[])
renaming (unique to +-unique; η to +-η; g-η to +-g-η)
public
module Dual where
op-binaryProducts : BinaryProducts op
op-binaryProducts = record { product = Coproduct⇒coProduct coproduct }
module op-binaryProducts = BinaryProducts op-binaryProducts
open Dual
+-comm : A + B ≅ B + A
+-comm = op-≅⇒≅ (op-binaryProducts.×-comm)
+-assoc : A + B + C ≅ (A + B) + C
+-assoc = op-≅⇒≅ (op-binaryProducts.×-assoc)
_+₁_ : A ⇒ B → C ⇒ D → A + C ⇒ B + D
_+₁_ = op-binaryProducts._⁂_
open op-binaryProducts
using ()
renaming ( ⟨⟩-congʳ to []-congʳ
; ⟨⟩-congˡ to []-congˡ
; assocˡ to +-assocʳ
; assocʳ to +-assocˡ
; swap to +-swap
; first to +-first
; second to +-second
; π₁∘⁂ to +₁∘i₁
; π₂∘⁂ to +₁∘i₂
; ⁂-cong₂ to +₁-cong₂
; ⁂∘⟨⟩ to []∘+₁
; ⁂∘⁂ to +₁∘+₁
; ⟨⟩∘ to ∘[]
; first↔second to +-second↔first
; swap∘⁂ to +₁∘+-swap
; swap∘swap to +-swap∘swap
)
public
-+- : Bifunctor 𝒞 𝒞 𝒞
-+- = record
{ F₀ = op-×-.F₀
; F₁ = op-×-.F₁
; identity = op-×-.identity
; homomorphism = op-×-.homomorphism
; F-resp-≈ = op-×-.F-resp-≈
}
where op-×- = op-binaryProducts.-×-
module op-×- = Functor op-×-
-+_ : Obj → Functor 𝒞 𝒞
-+_ = appʳ -+-
_+- : Obj → Functor 𝒞 𝒞
_+- = appˡ -+-
record Cocartesian : Set (levelOfTerm 𝒞) where
field
initial : Initial
coproducts : BinaryCoproducts
module initial = Initial initial
module coproducts = BinaryCoproducts coproducts
open initial
renaming (! to ¡; !-unique to ¡-unique; !-unique₂ to ¡-unique₂)
public
open coproducts hiding (module Dual) public
module Dual where
open coproducts.Dual public
op-cartesian : Cartesian
op-cartesian = record
{ terminal = ⊥⇒op⊤ initial
; products = op-binaryProducts
}
module op-cartesian = Cartesian op-cartesian
module CocartesianMonoidal (cocartesian : Cocartesian) where
open Cocartesian cocartesian
private module op-cartesianMonoidal = CartesianMonoidal Dual.op-cartesian
⊥+A≅A : ⊥ + A ≅ A
⊥+A≅A = op-≅⇒≅ (op-cartesianMonoidal.⊤×A≅A)
A+⊥≅A : A + ⊥ ≅ A
A+⊥≅A = op-≅⇒≅ (op-cartesianMonoidal.A×⊤≅A)
open op-cartesianMonoidal using (monoidal; ⊤×--id; -×⊤-id)
open NaturalIsomorphism using (op′)
⊥+--id : NaturalIsomorphism (⊥ +-) idF
⊥+--id = op′ ⊤×--id
-+⊥-id : NaturalIsomorphism (-+ ⊥) idF
-+⊥-id = op′ -×⊤-id
open Monoidal monoidal using (unit; unitorˡ-commute-to; unitorˡ-commute-from; unitorʳ-commute-to;
unitorʳ-commute-from; assoc-commute-to; assoc-commute-from; triangle; pentagon)
+-monoidal : Monoidal 𝒞
+-monoidal = record
{ ⊗ = -+-
; unit = unit
; unitorˡ = ⊥+A≅A
; unitorʳ = A+⊥≅A
; associator = ≅.sym +-assoc
; unitorˡ-commute-from = ⟺ unitorˡ-commute-to
; unitorˡ-commute-to = ⟺ unitorˡ-commute-from
; unitorʳ-commute-from = ⟺ unitorʳ-commute-to
; unitorʳ-commute-to = ⟺ unitorʳ-commute-from
; assoc-commute-from = ⟺ assoc-commute-to
; assoc-commute-to = ⟺ assoc-commute-from
; triangle = λ {X Y} →
Iso-≈ triangle
(Iso-∘ ([ X +- ]-resp-Iso (Iso-swap (iso ⊥+A≅A)))
(iso +-assoc))
([ -+ Y ]-resp-Iso (Iso-swap (iso A+⊥≅A)))
; pentagon = λ {X Y Z W} →
Iso-≈ pentagon
(Iso-∘ ([ X +- ]-resp-Iso (iso +-assoc))
(Iso-∘ (iso +-assoc)
([ -+ W ]-resp-Iso (iso +-assoc))))
(Iso-∘ (iso +-assoc) (iso +-assoc))
}
where open op-cartesianMonoidal
open _≅_
open Monoidal +-monoidal public
module CocartesianSymmetricMonoidal (cocartesian : Cocartesian) where
open Cocartesian cocartesian
open CocartesianMonoidal cocartesian
private
module op-cartesianSymmetricMonoidal = CSM 𝒞.op Dual.op-cartesian
+-symmetric : Symmetric +-monoidal
+-symmetric = record
{ braided = record
{ braiding = record
{ F⇒G = record
{ η = λ _ → +-swap
; commute = λ _ → ⟺ +₁∘+-swap
; sym-commute = λ _ → +₁∘+-swap
}
; F⇐G = record
{ η = λ _ → +-swap
; commute = λ _ → ⟺ +₁∘+-swap
; sym-commute = λ _ → +₁∘+-swap
}
; iso = λ _ → iso +-comm
}
; hexagon₁ = hexagon₂
; hexagon₂ = hexagon₁
}
; commutative = commutative
}
where open op-cartesianSymmetricMonoidal
open _≅_
open Symmetric symmetric using (commutative; hexagon₁; hexagon₂)
open Symmetric +-symmetric public