{-# OPTIONS --safe #-} module Cubical.Relation.Binary.Order.Woset.Properties where open import Cubical.Foundations.Prelude open import Cubical.Relation.Binary.Base open import Cubical.Relation.Binary.Order.Woset.Base open import Cubical.Relation.Binary.Order.StrictPoset.Base open import Cubical.Induction.WellFounded private variable ℓ ℓ' ℓ'' : Level module _ {A : Type ℓ} {R : Rel A A ℓ'} where open BinaryRelation isWoset→isStrictPoset : IsWoset R → IsStrictPoset R isWoset→isStrictPoset wos = isstrictposet (IsWoset.is-set wos) (IsWoset.is-prop-valued wos) irrefl (IsWoset.is-trans wos) (isIrrefl×isTrans→isAsym R (irrefl , (IsWoset.is-trans wos))) where irrefl : isIrrefl R irrefl = WellFounded→isIrrefl R (IsWoset.is-well-founded wos) Woset→StrictPoset : Woset ℓ ℓ' → StrictPoset ℓ ℓ' Woset→StrictPoset (_ , wos) = _ , strictposetstr (WosetStr._≺_ wos) (isWoset→isStrictPoset (WosetStr.isWoset wos))