module Cubical.Relation.Binary.Order.Woset.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Data.Sigma
open import Cubical.Reflection.RecordEquiv
open import Cubical.Reflection.StrictEquiv
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Relation.Binary.Base
open import Cubical.Relation.Binary.Extensionality
open import Cubical.Induction.WellFounded
open Iso
open BinaryRelation
private
  variable
    ℓ ℓ' ℓ'' ℓ₀ ℓ₀' ℓ₁ ℓ₁' ℓ₂ ℓ₂' : Level
record IsWoset {A : Type ℓ} (_≺_ : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where
  no-eta-equality
  constructor iswoset
  field
    is-set : isSet A
    is-prop-valued : isPropValued _≺_
    is-well-founded : WellFounded _≺_
    is-weakly-extensional : isWeaklyExtensional _≺_
    is-trans : isTrans _≺_
unquoteDecl IsWosetIsoΣ = declareRecordIsoΣ IsWosetIsoΣ (quote IsWoset)
record WosetStr (ℓ' : Level) (A : Type ℓ) : Type (ℓ-max ℓ (ℓ-suc ℓ')) where
  constructor wosetstr
  field
    _≺_     : A → A → Type ℓ'
    isWoset : IsWoset _≺_
  infixl 7 _≺_
  open IsWoset isWoset public
Woset : ∀ ℓ ℓ' → Type (ℓ-max (ℓ-suc ℓ) (ℓ-suc ℓ'))
Woset ℓ ℓ' = TypeWithStr ℓ (WosetStr ℓ')
woset : (A : Type ℓ) (_≺_ : A → A → Type ℓ') (h : IsWoset _≺_) → Woset ℓ ℓ'
woset A _≺_ h = A , wosetstr _≺_ h
record IsWosetEquiv {A : Type ℓ₀} {B : Type ℓ₁}
  (M : WosetStr ℓ₀' A) (e : A ≃ B) (N : WosetStr ℓ₁' B)
  : Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') ℓ₁')
  where
  constructor
   iswosetequiv
  
  private
    module M = WosetStr M
    module N = WosetStr N
  field
    pres≺ : (x y : A) → x M.≺ y ≃ equivFun e x N.≺ equivFun e y
  pres≺⁻ : (x y : B) → x N.≺ y ≃ invEq e x M.≺ invEq e y
  pres≺⁻ x y = invEquiv
                 (pres≺ (invEq e x) (invEq e y) ∙ₑ
                  substEquiv (N._≺ equivFun e (invEq e y)) (secEq e x) ∙ₑ
                  substEquiv (x N.≺_) (secEq e y))
WosetEquiv : (M : Woset ℓ₀ ℓ₀') (M : Woset ℓ₁ ℓ₁') → Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁'))
WosetEquiv M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] IsWosetEquiv (M .snd) e (N .snd)
invWosetEquiv : {M : Woset ℓ₀ ℓ₀'} {N : Woset ℓ₁ ℓ₁'} → WosetEquiv M N → WosetEquiv N M
invWosetEquiv (M≃N , iswq) = invEquiv M≃N , iswosetequiv (IsWosetEquiv.pres≺⁻ iswq)
compWosetEquiv : {M : Woset ℓ₀ ℓ₀'} {N : Woset ℓ₁ ℓ₁'} {O : Woset ℓ₂ ℓ₂'}
               → WosetEquiv M N → WosetEquiv N O → WosetEquiv M O
compWosetEquiv (M≃N , wqMN) (N≃O , wqNO) = (compEquiv M≃N N≃O)
               , (iswosetequiv (λ x y
               → compEquiv (IsWosetEquiv.pres≺ wqMN x y)
                           (IsWosetEquiv.pres≺ wqNO (equivFun M≃N x) (equivFun M≃N y))))
reflWosetEquiv : {M : Woset ℓ₀ ℓ₀'} → WosetEquiv M M
reflWosetEquiv {M = M} = (idEquiv ⟨ M ⟩) , (iswosetequiv (λ _ _ → idEquiv _))
isPropIsWoset : {A : Type ℓ} (_≺_ : A → A → Type ℓ') → isProp (IsWoset _≺_)
isPropIsWoset _≺_ = isOfHLevelRetractFromIso 1 IsWosetIsoΣ
  (isPropΣ isPropIsSet
    λ isSetA → isPropΣ (isPropΠ2 (λ _ _ → isPropIsProp))
      λ isPropValued≺ → isProp×2
                         isPropWellFounded
                         (isPropIsWeaklyExtensional _≺_)
                         (isPropΠ5 λ x _ z _ _ → isPropValued≺ x z))
private
  unquoteDecl IsWosetEquivIsoΣ = declareRecordIsoΣ IsWosetEquivIsoΣ (quote IsWosetEquiv)
isPropIsWosetEquiv : {A : Type ℓ₀} {B : Type ℓ₁}
                   → (M : WosetStr ℓ₀' A) (e : A ≃ B) (N : WosetStr ℓ₁' B)
                   → isProp (IsWosetEquiv M e N)
isPropIsWosetEquiv M e N = isOfHLevelRetractFromIso 1 IsWosetEquivIsoΣ
  (isPropΠ2 λ x y → isOfHLevel≃ 1
    (IsWoset.is-prop-valued (WosetStr.isWoset M) x y)
    (IsWoset.is-prop-valued (WosetStr.isWoset N) (e .fst x) (e .fst y)))
𝒮ᴰ-Woset : DUARel (𝒮-Univ ℓ) (WosetStr ℓ') (ℓ-max ℓ ℓ')
𝒮ᴰ-Woset =
  𝒮ᴰ-Record (𝒮-Univ _) IsWosetEquiv
    (fields:
      data[ _≺_ ∣ autoDUARel _ _ ∣ pres≺ ]
      prop[ isWoset ∣ (λ _ _ → isPropIsWoset _) ])
    where
    open WosetStr
    open IsWoset
    open IsWosetEquiv
WosetPath : (M N : Woset ℓ ℓ') → WosetEquiv M N ≃ (M ≡ N)
WosetPath = ∫ 𝒮ᴰ-Woset .UARel.ua
isSetWoset : isSet (Woset ℓ ℓ')
isSetWoset M N = isOfHLevelRespectEquiv 1 (WosetPath M N)
  λ ((f , eqf) , wqf) ((g , eqg) , wqg)
    → Σ≡Prop (λ e → isPropIsWosetEquiv (str M) e (str N))
      (Σ≡Prop (λ _ → isPropIsEquiv _)
        (funExt (WFI.induction wellM λ a ind
          → isWeaklyExtensional→≺Equiv→≡ _≺ₙ_ weakN (f a) (g a) λ c
            → propBiimpl→Equiv (propN c (f a)) (propN c (g a))
  (λ c≺ₙfa → subst (_≺ₙ g a) (secEq (g , eqg) c)
               (equivFun (IsWosetEquiv.pres≺ wqg (invEq (g , eqg) c) a)
                (subst (_≺ₘ a)
                 (sym
                  (cong (invEq (g , eqg))
                   (sym (secEq (f , eqf) c)
                   ∙ ind (invEq (f , eqf) c)
                    (subst (invEq (f , eqf) c ≺ₘ_) (retEq (f , eqf) a)
                     (equivFun (IsWosetEquiv.pres≺⁻ wqf c (f a)) c≺ₙfa)))
                   ∙ retEq (g , eqg) (invEq (f , eqf) c)))
                 (subst (invEq (f , eqf) c ≺ₘ_)
                   (retEq (f , eqf) a)
                     (equivFun
                       (IsWosetEquiv.pres≺⁻ wqf c (f a)) c≺ₙfa)))))
   λ c≺ₙga → subst (_≺ₙ f a) (secEq (f , eqf) c)
               (equivFun (IsWosetEquiv.pres≺ wqf (invEq (f , eqf) c) a)
                 (subst (_≺ₘ a)
                   (sym
                     (retEq (f , eqf) (invEq (g , eqg) c))
                     ∙ cong (invEq (f , eqf))
                      (ind (invEq (g , eqg) c)
                       (subst (invEq (g , eqg) c ≺ₘ_) (retEq (g , eqg) a)
                        (equivFun (IsWosetEquiv.pres≺⁻ wqg c (g a)) c≺ₙga))
                       ∙ secEq (g , eqg) c))
                   (subst (invEq (g , eqg) c ≺ₘ_)
                     (retEq (g , eqg) a)
                       (equivFun
                         (IsWosetEquiv.pres≺⁻ wqg c (g a)) c≺ₙga)))))))
  where _≺ₘ_ = WosetStr._≺_ (str M)
        _≺ₙ_ = WosetStr._≺_ (str N)
        wosM = WosetStr.isWoset (str M)
        wosN = WosetStr.isWoset (str N)
        wellM = IsWoset.is-well-founded (wosM)
        weakN = IsWoset.is-weakly-extensional (wosN)
        propN = IsWoset.is-prop-valued (wosN)
module _ {P : Woset ℓ₀ ℓ₀'} {S : Woset ℓ₁ ℓ₁'} (e : ⟨ P ⟩ ≃ ⟨ S ⟩) where
  private
    module P = WosetStr (P .snd)
    module S = WosetStr (S .snd)
  module _ (isMon : ∀ x y → x P.≺ y → equivFun e x S.≺ equivFun e y)
           (isMonInv : ∀ x y → x S.≺ y → invEq e x P.≺ invEq e y) where
    open IsWosetEquiv
    open IsWoset
    makeIsWosetEquiv : IsWosetEquiv (P .snd) e (S .snd)
    pres≺ makeIsWosetEquiv x y = propBiimpl→Equiv (P.isWoset .is-prop-valued _ _)
                                                  (S.isWoset .is-prop-valued _ _)
                                                  (isMon _ _) (isMonInv' _ _)
      where
      isMonInv' : ∀ x y → equivFun e x S.≺ equivFun e y → x P.≺ y
      isMonInv' x y ex≺ey = transport (λ i → retEq e x i P.≺ retEq e y i) (isMonInv _ _ ex≺ey)